好文档 - 专业文书写作范文服务资料分享网站

2014年中考试题分类汇编相似三角形 - 图文 

天下 分享 时间: 加入收藏 我要投稿 点赞

考点: 相似三角形的判定与性质;矩形的性质;解直角三角形. 分析: (1)根据题意可得∠DEC=∠FDC,利用两角法即可进行相似的判定; (2)根据F为AD的中点,可得FB=FC,根据AD∥BC,可得FE:EC=FD:BC=1:2,再由sin∠FBD=EF:BF=EF:FC,即可得出答案,设EF=x,则EC=2x,利用(1)的结论求出x,在Rt△CFD中求出FD,继而得出BC. 解答: 解:(1)∵∠DEC=∠FDC=90°,∠DCE=∠FCD, ∴△DEC∽△FDC. (2)∵F为AD的中点,AD∥BC, ∴FE:EC=FD:BC=1:2,FB=FC, ∴FE:FC=1:3, ∴sin∠FBD=EF:BF=EF:FC=; 设EF=x,则FC=3x, ∵△DEC∽△FDC, ∴=,即可得:6x=12, 2解得:x=, 则CF=3, 在Rt△CFD中,DF==, ∴BC=2DF=2. 点评: 本题考查了相似三角形的判定与性质,解答本题的关键是掌握相似三角形的判定定理及相似三角形的性质:对应边成比例. 44、(2013?株洲)已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P. (1)当点P在线段AB上时,求证:△APQ∽△ABC; (2)当△PQB为等腰三角形时,求AP的长.

考点: 相似三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理. 分析: (1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△APQ∽△ABC; (2)当△PQB为等腰三角形时,有两种情况,需要分类讨论. (I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长; (II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP. 解答: (1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°, ∴∠APQ=∠C. 在△APQ与△ABC中, ∵∠APQ=∠C,∠A=∠A, ∴△APQ∽△ABC. (2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5. ∵∠BPQ为钝角, ∴当△PQB为等腰三角形时,只可能是PB=PQ. (I)当点P在线段AB上时,如题图1所示. 由(1)可知,△APQ∽△ABC, ∴,即,解得:PB=, ∴AP=AB﹣PB=3﹣=; (II)当点P在线段AB的延长线上时,如题图2所示. ∵BP=BQ,∴∠BQP=∠P, ∵∠BQP+∠AQB=90°,∠A+∠P=90°, ∴∠AQB=∠A, ∴BQ=AB, ∴AB=BP,点B为线段AB中点, ∴AP=2AB=2×3=6. 综上所述,当△PQB为等腰三角形时,AP的长为或6. 点评: 本题考查相似三角形及分类讨论的数学思想,难度不大.第(2)问中,当△PQB为等腰三角形时,有两种情况,需要分类讨论,避免漏解.

考点:相似形综合题. 专题:综合题. 分析:(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;

(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB?PC的值; 45、(2013福省福州21)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD的面积为,设AB=x,AD=y (1)求y与x的函数关系式;

(2)若∠APD=45°,当y=1时,求PB?PC的值; (3)若∠APD=90°,求y的最小值.

(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值. 解答:解:(1)如图1,过A作AE⊥BC于点E, 在Rt△ABE中,∠B=45°,AB=x, ∴AE=AB?sinB=∵S△APD=

x,

11AD?AE=, 2211∴?y?x=, 22则y=

(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°, ∴∠BAP=∠CPD,

∵四边形ABCD为等腰梯形, ∴∠B=∠C,AB=CD, ∴△ABP∽△PCD, ∴

=

2

∴PB?PC=AB?DC=AB, 当y=1时,x=,即AB=

则PB?PC=()=2;

(3)如图2,取AD的中点F,连接PF, 过P作PH⊥AD,可得PF≥PH, 当PF=PH时,PF有最小值, ∵∠APD=90°, ∴PF=AD=y, ∴PH=y,

2

11?AD?PH=, 221112

∴?y?y=,即y=2, 222∵S△APD=

∵y>0,∴y=, 则y的最小值为.

点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键. 46、(2013?苏州)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G. (1)求证:△APB≌△APD;

(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y. ①求y与x的函数关系式; ②当x=6时,求线段FG的长.

考点: 相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质. 分析: (1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD; (2)①首先证明△DFP≌△BEP,进而得出即可得出答案; =,=,进而得出=,即=,②根据①中所求得出PF=PE=4,DP=PB=6,进而得出==,求出即可. 解答: (1)证明:∵点P是菱形ABCD对角线AC上的一点, ∴∠DAP=∠PAB,AD=AB, ∵在△APB和△APD中 , ∴△APB≌△APD(SAS); (2)解:①∵△APB≌△APD, ∴DP=PB,∠ADP=∠ABP, ∵在△DFP和△BEP中, , ∴△DFP≌△BEP(ASA), ∴PF=PE,DF=BE, ∵GD∥AB, ∴=, ∵DF:FA=1:2, ∴∴∵=,=, =,即=, =, ∴y=x; ②当x=6时,y=×6=4, ∴PF=PE=4,DP=PB=6, ∵∴==, =, 解得:FG=5, 故线段FG的长为5. 点评: 此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,根据平行关系得出=,=是解题关键. 47、(2013?衢州)【提出问题】 (1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN. 【类比探究】

2014年中考试题分类汇编相似三角形 - 图文 

考点:相似三角形的判定与性质;矩形的性质;解直角三角形.分析:(1)根据题意可得∠DEC=∠FDC,利用两角法即可进行相似的判定;(2)根据F为AD的中点,可得FB=FC,根据AD∥BC,可得FE:EC=FD:BC=1:2,再由sin∠FBD=EF:BF=EF:FC,即可得出答案,设EF=x,则EC=2x,利用(1)的结论求出x,在Rt△CFD中求出FD,继而得出B
推荐度:
点击下载文档文档为doc格式
6qkx53p1km0fvam2h1n0
领取福利

微信扫码领取福利

微信扫码分享