好文档 - 专业文书写作范文服务资料分享网站

2014年中考试题分类汇编相似三角形 - 图文 

天下 分享 时间: 加入收藏 我要投稿 点赞

考点: 相似三角形的判定与性质. 分析: 由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:即可求得答案. 解答: 解:∵∠BAC=∠ACD=90°, ∴AB∥CD, ∴△ABE∽△DCE, ∴, ,然后利用三角函数,用AC表示出AB与CD,∵在Rt△ACB中∠B=45°, ∴AB=AC, ∵在RtACD中,∠D=30°, ∴CD=∴===. . AC, 故答案为:点评: 此题考查了相似三角形的判定与性质与三角函数的性质.此题难度不大,注意掌握数形结合思想的应用. 24、(2013台湾、33)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )

A.甲>乙,乙>丙 B.甲>乙,乙<丙 考点:相似三角形的判定与性质.

C.甲<乙,乙>丙

D.甲<乙,乙<丙

分析:首先过点B作BH⊥GF于点H,则S乙=AB?AC,易证得△ABC∽△DBE,△GBH∽△BCA,可求得GF,DB,DE,DF的长,继而求得答案. 解答:解:如图:过点B作BH⊥GF于点H, 则S乙=AB?AC, ∵AC∥DE,

∴△ABC∽△DBE, ∴

∵BC=7,CE=3,

∴DE=AC,DB=AB,

∴AD=BD﹣BA=AB, ∴S丙=(AC+DE)?AD=

AB?AC,

∵A∥GF,BH⊥GF,AC⊥AB, ∴BH∥AC,

∴四边形BDFH是矩形, ∴BH=DF,FH=BD=∴△GBH∽△BCA, ∴

AB,

∵GB=2,BC=7, ∴GH=AB,BHAC, ∴DF=AC,GF=GH+FH=∴S甲=(BD+GF)?DF=∴甲<乙,乙<丙. 故选D.

AB, AB?AC,

点评:此题考查了相似三角形的判定与性质、直角梯形的性质以及直角三角形的性质.此题

难度适中,注意掌握数形结合思想的应用.

25、(13年北京4分5) 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近

岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于

A. 60m B. 40m C. 30m D. 20m 答案:B

解析:由△EAB∽△EDC,得:

CECD1020,即,解得:AB=40 ??BEAB20AB

26、(2013?牡丹江)劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为 2.4cm或 考点: 相似三角形的判定与性质;等腰三角形的性质;平行四边形的性质. 专题: 分类讨论. 分析: 设平行四边形的短边为xcm,分两种情况进行讨论,①若BE是平行四边形的一个短边,②若BD是平行四边形的一个短边,利用三角形相似的性质求出x的值. 解答: 解:如图AB=AC=8cm,BC=6cm, 设平行四边形的短边为xcm, ①若BE是平行四边形的一个短边, 则EF∥BC, cm .

=, 解得x=2.4厘米, ②若BD是平行四边形的一个短边, 则EF∥AB, =解得x=, cm, cm. 综上所述短边为2.4cm或 点评: 本题主要考查相似三角形的判定与性质等知识点,解答本题的关键是正确的画出图形,结合图形很容易解答. 27、(2013?眉山)如图,△ABC中,E、F分别是AB、AC上的两点,且的面积为2,则四边形EBCF的面积为 16 .

,若△AEF

考点: 相似三角形的判定与性质. 分析: 根据题意可判定△AEF∽△ABC,利用面积比等于相似比平方可得出△ABC的面积,继而根据S四边形EBCF=S△ABC﹣S△AEF,即可得出答案. 解答: 解:∵, ∴EF∥BC, ∴△AEF∽△ABC, ∴=()=()=, 22∴S△ABC=18, 则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16. 故答案为:16. 点评: 本题考查了相似三角形的判定与性质,解答本题的关键是证明△AEF∽△ABC,要求同学们熟练掌握相似三角形的面积比等于相似比平方. 28、(2013?六盘水)如图,添加一个条件: ∠ADE=∠ACB(答案不唯一) ,使△ADE∽△ACB,(写出一个即可)

考点: 相似三角形的判定. 专题: 开放型. 分析: 相似三角形的判定有三种方法: ①三边法:三组对应边的比相等的两个三角形相似; ②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似; ③两角法:有两组角对应相等的两个三角形相似. 由此可得出可添加的条件. 解答: 解:由题意得,∠A=∠A(公共角), 则可添加:∠ADE=∠ACB,利用两角法可判定△ADE∽△ACB. 故答案可为:∠ADE=∠ACB. 点评: 本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一. 29、(2013?苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为 (2,4﹣2) .

考点: 相似三角形的判定与性质;坐标与图形性质;正方形的性质. 分析: 根据正方形的对角线等于边长的倍求出OB,再求出BQ,然后求出△BPQ和△OCQ相似,根据相似三角形对应边成比例列式求出BP的长,再求出AP,即可得到点P的坐标. 解答: 解:∵四边形OABC是边长为2的正方形, ∴OA=OC=2,OB=2, ∵QO=OC, ∴BQ=OB﹣OQ=2﹣2, ∵正方形OABC的边AB∥OC, ∴△BPQ∽△OCQ, ∴即==, , 解得BP=2﹣2, ∴AP=AB﹣BP=2﹣(2﹣2)=4﹣2, ∴点P的坐标为(2,4﹣2). 故答案为:(2,4﹣2). 点评: 本题考查了相似三角形的判定与性质,正方形的对角线等于边长的倍的性质,以及坐标与图形的性质,比较简单,利用相似三角形的对应边成比例求出BP的长是解题的关键. 30、(2013?眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:

222

①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE+DC=DE, 其中正确的有( )个.

2014年中考试题分类汇编相似三角形 - 图文 

考点:相似三角形的判定与性质.分析:由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:即可求得答案.解答:解:∵∠BAC=∠ACD=90°,∴AB∥CD,∴△ABE∽△DCE,∴,,然后利用三角函数,用AC表示出AB与CD,∵在Rt△ACB中∠B=45°,∴AB=AC,∵在RtACD中,∠D=30°,∴CD
推荐度:
点击下载文档文档为doc格式
6qkx53p1km0fvam2h1n0
领取福利

微信扫码领取福利

微信扫码分享