好文档 - 专业文书写作范文服务资料分享网站

2014年中考试题分类汇编相似三角形 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

2014年中考试题分类汇编

——相似三角形

1、(2013?昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:

①△APE≌△AME;②PM+PN=AC;③PE+PF=PO;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点. 其中正确的结论有( )

2

2

2

A.5个 B. 4个 C. 3个 D. 2个 考点: 相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质 分析: 依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断. 解答: 解:∵四边形ABCD是正方形, ∴∠BAC=∠DAC=45°. ∵在△APE和△AME中, , ∴△APE≌△AME,故①正确; ∴PE=EM=PM, 同理,FP=FN=NP. ∵正方形ABCD中AC⊥BD, 又∵PE⊥AC,PF⊥BD, ∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形. ∴PF=OE, ∴PE+PF=OA, 又∵PE=EM=PM,FP=FN=NP,OA=AC, ∴PM+PN=AC,故②正确; ∵四边形PEOF是矩形, ∴PE=OF, 在直角△OPF中,OF+PF=PO, 222∴PE+PF=PO,故③正确. ∵△BNF是等腰直角三角形,而△POF不一定是,故④错误; ∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形. ∴PM=PN, 又∵△AMP和△BPN都是等腰直角三角形, ∴AP=BP,即P时AB的中点.故⑤正确. 故选B. 点评: 本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键. 2、(2013?新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )

222 2 A.B. 2.5或3.5 C. 3.5或4.5 D. 2或3.5或4.5 考点: 相似三角形的判定与性质;含30度角的直角三角形. 专题: 动点型. 分析: 由Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,可求得AB的长,由D为BC的中点,可求得BD的长,然后分别从若∠DBE=90°与若∠EDB=90°时,去分析求解即可求得答案. 解答: 解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm, ∴AB=2BC=4(cm), ∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发, ∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm), 若∠DBE=90°, 当A→B时,∵∠ABC=60°, ∴∠BDE=30°, ∴BE=BD=(cm), ∴t=3.5, 当B→A时,t=4+0.5=4.5. 若∠EDB=90°时, 当A→B时,∵∠ABC=60°, ∴∠BED=30°, ∴BE=2BD=2(cm), ∴t=4﹣2=2, 当B→A时,t=4+2=6(舍去). 综上可得:t的值为2或3.5或4.5. 故选D. 点评: 此题考查了含30°角的直角三角形的性质.此题属于动点问题,难度适中,注意掌握分类讨论思想与数形结合思想的应用. 3、(2013?新疆)如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是( )

考点: 相似三角形的判定与性质. 分析: 根据DE∥BC,证明△ADE∽△ABC,然后根据对应边成比例求得BC的长度. 解答: 解:∵DE∥BC, ∴△ADE∽△ABC, 则=, ∵DE=1,AD=2,DB=3, ∴AB=AD+DB=5, ∴BC==5. 2故选C. 点评: 本题考查了相似三角形的判定和性质,难度一般,解答本题的关键是根据平行证明△ADE∽△ABC. 4、(2013?内江)如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )

A.2:5 C. 3:5 D. 3:2 考点: 相似三角形的判定与性质;平行四边形的性质. 分析: 先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:10:25即可得出其相似比,由相似三角形的性质即可求出 DE:EC的值,由AB=CD即可得出结论. 解答: 解:∵四边形ABCD是平行四边形, ∴AB∥CD, B. 2:3 ∴∠EAB=∠DEF,∠AFB=∠DFE, ∴△DEF∽△BAF, ∵S△DEF:S△ABF=4:25, ∴DE:AB=2:5, ∵AB=CD, ∴DE:EC=2:3. 故选B. 点评: 本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键. 5、(2013?自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为( )

11 A. 10 B. 9 C. 8 D. 考点: 相似三角形的判定与性质;勾股定理;平行四边形的性质. 分析: 判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长. 解答: 解:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E, ∴∠BAF=∠DAF, ∵AB∥DF,AD∥BC, ∴∠BAF=∠F=∠DAF,∠BAE=∠AEB, ∴AB=BE=6,AD=DF=9, ∴△ADF是等腰三角形,△ABE是等腰三角形, ∵AD∥BC, ∴△EFC是等腰三角形,且FC=CE, ∴EC=FC=9﹣6=3, 在△ABG中,BG⊥AE,AB=6,BG=4, ∴AG==2, ∴AE=2AG=4, ∴△ABE的周长等于16, 又∵△CEF∽△BEA,相似比为1:2, ∴△CEF的周长为8. 故选D. 点评: 本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大. 6、(2013?雅安)如图,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=

..

考点: 相似三角形的判定与性质;平行四边形的性质. 分析: 由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解. 解答: 解:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∵AE:BE=4:3, ∴BE:AB=3:7, ∴BE:CD=3:7. ∵AB∥CD, ∴△BEF∽△DCF, ∴BF:DF=BE:CD=3:7, 即2:DF=3:7, ∴DF=. . 故答案为:点评: 此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解. 7、(2013?雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为( )

2014年中考试题分类汇编相似三角形 - 图文

2014年中考试题分类汇编——相似三角形1、(2013?昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE+PF=PO;④△POF∽△BNF;⑤当△PMN∽△
推荐度:
点击下载文档文档为doc格式
6qkx53p1km0fvam2h1n0
领取福利

微信扫码领取福利

微信扫码分享