好文档 - 专业文书写作范文服务资料分享网站

概率论与数理统计习题解答第4章

天下 分享 时间: 加入收藏 我要投稿 点赞

精品文档

概率论与数理统计(第二版.刘建亚)习题解答——第四章

4-1 解:E(X) =1′0.25+2′0.4+3′0.2+4′0.1+5′0.05= 2.3

4-2 解: 由D(X) = E(X 2)-[E(X)]2 得

E(X)

E(X2 )

D(X) X 1 50 2501 1 X 2

50

2502

2

∵ D(X 1) < D(X 2)

, 用甲法测定的精度高。

4-3 解:

X 0 1 2 3 P

0.75

0.2045

0.0409

0.0045 E(X)=0.3003,E(X2)=0.4086,D(X)=0.3184,[D(X)]1/2=0.5643。4-4 解:

E(X *) = E X -E(X) = 1 E[X -E(X)]= 1

[E(X)-E(X)]= 0 D(X) D(X) D(X)

2

D(X *) =E(X*)2 -[E(X*)]2 =E(X*)2 =E X-E(X) = 1 E[X-E(X)]2 = 1 D(X) = 1

D(X) D(X) D(X)

4-5 解:

+¥ 1

x

E(X) = -¥ xf (x)dx = -1 p 1-x 2 dx = 0 E(X 2) = -+¥¥ x2 f (x)dx = -11 p 1x-2 x2 dx = 01 p 21x-2 x 2 dx .

精品文档

x = sint 1 0p2 2sintdx = 1

p 2

D(X) = E(X 2)-[E(X)]2 = 4-6 解:

+¥ +¥

0p2

(1-cost)dx = 1 p

1 -x

dx = 0

E(X) = -¥ xf (x)dx = -¥ x× 2 e

D(X) = E{[X -E(X)]2}= -+¥¥(x-0)2 ×e-xdx =

x

0+¥ 2-

xedx ;

=-x2e-x+0¥ +2 0+¥xe-xdx =-2xe-x +0 ¥ +2 0+ ¥ e-xdx = 2

a

1 p ,则 =1-p,a = ;

4-7 解:令 p=

1+a

1+a 1- p

k

E(X) = k 0 kP(X = k) = k 0 k× 1

=

=

???1+aa÷÷÷ = k=0 k×(1- p)pk = p(1- p)k= 1 kp k-1

1+a

d d d p

= p(1- p)k= 1 (pk) = p(1- p) ???k=1 pk÷÷÷÷= p(1- p) dp???1-p ÷÷÷÷

dp

dp

d 1 d 1 1p

= p(1- p) dp1-p -1÷=÷÷ p(1- p) dp1-p ÷÷÷= p(1- p)× (1-p)2 = 1-p = a

k

E(X 2) = k 0 k2P(X = k) = k 0 k2 × + 1 ???1+aa÷÷÷ = p(1- p)k= 1 [k(k-1)+k]p k-1

= =

1 a

d2

2

= p(1- p) k(k-1)pk-1 + kpk-1 = p(1- p) p

k=1

k=1

(pk)+ kpk-1

k=2

dp k=1

.

精品文档

= p2(1- p) dp d22 ????k¥ = 2 pk÷÷÷÷+a = a+ p2(1- p) dpd22 ????1-p2p÷ ÷÷÷

= p2(1- p)×

p)

p

+a = 2???1-p ÷÷÷÷ +a = 2a2 + a (1-

2

D(X) = E(X 2)-[E(X)]2 = 2a2 +a-a2 = a2 +a

4-8 证明:设 X 为连续型随机变量,其概率密度函数为 f (x) 。

+¥

+¥

+ ¥

(1)E(aX +b) = -¥ (ax+b) f (x)dx = a -¥ xf (x)dx+b - ¥ f (x)dx = aE(X)+b (2)D(cX) = E(c2X 2)-[E(cX)]2 =c2E(X 2)-c2[E(X)]2 =c2D(X)。 4-9 证明:

D(X) = E[(X -E(X)]2 = E{(X -C)-[E(X)-C]}2

= E{(X -C)2}-2E{(X -C)[E(X)-C]}+E{[E(X)-C]2} = E(X -C)2 -2[E(X)-C]2 +[E(X)-C]2

= E(X -C)2 -[E(X)-C]2 £ E(X -C)2

4-10 解:

X

X ~ N(m, s2) ,已知:m=143.10, s2 = 5.672 ,则 U = -m ~ N(0,1) ,由双侧分位点知:[-u , u ]内的概率为

a 2 a 2 s 1-a = 0.95, a = 0.05,1-ua2= 0.975,查表得 u∴ m sua2143.10

5.67

1.96

a 2

=1.96,

∴ 95%正常范围为[131.99,154.22]。

4-11 证明:

E(X)-c = E(X -c) = -+¥¥(x-c) f (x)dxt = x-c - + ¥ ¥ tf (c+t)dt

0 + ¥

= - ¥ tf (c+t)dt+ 0 tf (c+t)dt

.

精品文档

0

tf (c+t)dtu =-t + 0¥ uf (c-u)du =- 0+¥uf (c-u)du =- 0+ ¥ uf (c+u)du

+¥

+ ¥

-¥

代入上式得 E(X)-c =- 0 uf (c+u)du+ 0 tf (c+t)dt = 0 ∴ E(X) =c

4-12 解:

+¥

0+ ¥ -

x

dx = 2;

(1)E(Y) = E(2X) = 2E(X) = 2 - ¥ xf (x)dx = 2 xe

(2)E(Y) = E(e-2X ) = -+¥¥e-2x f (x)dx = 0+¥e-3xdx = 1 3 。

4-13 略 4-14 解:

+¥

+¥

1

1

1

1 7

E(X) = -¥

-¥

xf (x, y)dxdy = 0 x 0 (x+ y)dydx = 0 x(x+ 2)dx = 12 ;

由对称性,得 E(Y) =

+¥ +¥

1

1

1

1

2

1 1

E(XY) = -¥ -¥ xyf (x, y)dxdy = 0 x 0 y(x+ y)dydx = 0 (2 x + 3 x)dx = 3 。

4-15 解:∵ X,Y 相互独立,

+¥

+ ¥

E(XY) = E(X)E(Y) = -¥ xfX (x)dx× -¥ yfY (y)dy ∴

= 012x2dx× 5+¥ ye-(

-5)

dy = 2′ 5+ 5+ ¥e-( -5)dy = 4

4-16 解:记 q =1- p,则

E(X) = k=1 kP(X = k) = k=1 k× pqk-1 = p k=1 kqk-1 = p k= 1 d (qk) = p d

???k= 1 pk÷ ÷÷÷

dq dq

.

精品文档

= p d q ÷= p d 1

1-q (1-q) -1÷= p d 1 ÷= p 1 p

2

= 1 dq 1-q dq 1-q dq

E(X 2) = k2P(X = k) = k2 × pqk-1 = p [k(k-1)+k]qk-1

k=1

k=1

k=1

= p q k=2

k=1

k=2

k=1

k(k-1)qk-2 + kqk-1 = p q d22 (qk)+ kqk-1 = pq d22 ??? p k÷÷÷+ 1

dq dq

k=1

p

= pq d22 ???1-1q÷÷÷÷+ 1p = pq (1-2q)3 + 1p = 2-p2p = 1+p2q dq

1q 1q1p

∴ D(X) = E(X 2)-[E(X)]2 = +2- 2 = 2 = -2。

p p p p

4-17 设随机变量X服从瑞利分布,其概率密度为 ì? x2

f

(x)=???í?s x2 e-2s2 x>0 ???? 0 x£0

其中

s>0为常数,求E(X ), D(X) 。

+¥

x -

+¥ -

分部积分 +¥ -

22

x/s=t

解:

E(X)= 0 2

e 2xs22 dx=- 0 xde 2 s 2 x2 0

e 2xs22 dx s 2 p s

E(X 2) 4-18 解:

ò

=0+¥ x 32e-2xs22 dx分部积分2 s2 \\D(X)=E(X 2)-[E(X)]2 = 4-ps2 s 2

111

E(X) = E???n k=n1 Xk÷÷÷÷= n k=n1 E(Xk) = n ×nm= m

.

概率论与数理统计习题解答第4章

精品文档概率论与数理统计(第二版.刘建亚)习题解答——第四章4-1解:E(X)=1′0.25+2′0.4+3′0.2+4′0.1+5′0.05=2.34-2解:由D(X)=E(X2)-[E(X)]2得E(X)E(X2)D(X)X15025011X2
推荐度:
点击下载文档文档为doc格式
6qive4k5fs85bn78arf2570pk9t7uz00b5e
领取福利

微信扫码领取福利

微信扫码分享