精品文档
概率论与数理统计(第二版.刘建亚)习题解答——第四章
4-1 解:E(X) =1′0.25+2′0.4+3′0.2+4′0.1+5′0.05= 2.3
4-2 解: 由D(X) = E(X 2)-[E(X)]2 得
E(X)
E(X2 )
D(X) X 1 50 2501 1 X 2
50
2502
2
∵ D(X 1) < D(X 2)
, 用甲法测定的精度高。
4-3 解:
X 0 1 2 3 P
0.75
0.2045
0.0409
0.0045 E(X)=0.3003,E(X2)=0.4086,D(X)=0.3184,[D(X)]1/2=0.5643。4-4 解:
E(X *) = E X -E(X) = 1 E[X -E(X)]= 1
[E(X)-E(X)]= 0 D(X) D(X) D(X)
2
D(X *) =E(X*)2 -[E(X*)]2 =E(X*)2 =E X-E(X) = 1 E[X-E(X)]2 = 1 D(X) = 1
D(X) D(X) D(X)
4-5 解:
+¥ 1
x
E(X) = -¥ xf (x)dx = -1 p 1-x 2 dx = 0 E(X 2) = -+¥¥ x2 f (x)dx = -11 p 1x-2 x2 dx = 01 p 21x-2 x 2 dx .
精品文档
x = sint 1 0p2 2sintdx = 1
p 2
D(X) = E(X 2)-[E(X)]2 = 4-6 解:
+¥ +¥
0p2
(1-cost)dx = 1 p
1 -x
dx = 0
E(X) = -¥ xf (x)dx = -¥ x× 2 e
D(X) = E{[X -E(X)]2}= -+¥¥(x-0)2 ×e-xdx =
x
0+¥ 2-
xedx ;
=-x2e-x+0¥ +2 0+¥xe-xdx =-2xe-x +0 ¥ +2 0+ ¥ e-xdx = 2
a
1 p ,则 =1-p,a = ;
4-7 解:令 p=
1+a
1+a 1- p
k
E(X) = k 0 kP(X = k) = k 0 k× 1
=
=
???1+aa÷÷÷ = k=0 k×(1- p)pk = p(1- p)k= 1 kp k-1
1+a
d d d p
= p(1- p)k= 1 (pk) = p(1- p) ???k=1 pk÷÷÷÷= p(1- p) dp???1-p ÷÷÷÷
dp
dp
d 1 d 1 1p
= p(1- p) dp1-p -1÷=÷÷ p(1- p) dp1-p ÷÷÷= p(1- p)× (1-p)2 = 1-p = a
k
E(X 2) = k 0 k2P(X = k) = k 0 k2 × + 1 ???1+aa÷÷÷ = p(1- p)k= 1 [k(k-1)+k]p k-1
= =
1 a
d2
2
= p(1- p) k(k-1)pk-1 + kpk-1 = p(1- p) p
k=1
k=1
(pk)+ kpk-1
k=2
dp k=1
.
精品文档
= p2(1- p) dp d22 ????k¥ = 2 pk÷÷÷÷+a = a+ p2(1- p) dpd22 ????1-p2p÷ ÷÷÷
= p2(1- p)×
p)
p
+a = 2???1-p ÷÷÷÷ +a = 2a2 + a (1-
2
D(X) = E(X 2)-[E(X)]2 = 2a2 +a-a2 = a2 +a
4-8 证明:设 X 为连续型随机变量,其概率密度函数为 f (x) 。
+¥
+¥
+ ¥
(1)E(aX +b) = -¥ (ax+b) f (x)dx = a -¥ xf (x)dx+b - ¥ f (x)dx = aE(X)+b (2)D(cX) = E(c2X 2)-[E(cX)]2 =c2E(X 2)-c2[E(X)]2 =c2D(X)。 4-9 证明:
D(X) = E[(X -E(X)]2 = E{(X -C)-[E(X)-C]}2
= E{(X -C)2}-2E{(X -C)[E(X)-C]}+E{[E(X)-C]2} = E(X -C)2 -2[E(X)-C]2 +[E(X)-C]2
= E(X -C)2 -[E(X)-C]2 £ E(X -C)2
4-10 解:
X
X ~ N(m, s2) ,已知:m=143.10, s2 = 5.672 ,则 U = -m ~ N(0,1) ,由双侧分位点知:[-u , u ]内的概率为
a 2 a 2 s 1-a = 0.95, a = 0.05,1-ua2= 0.975,查表得 u∴ m sua2143.10
5.67
1.96
a 2
=1.96,
∴ 95%正常范围为[131.99,154.22]。
4-11 证明:
E(X)-c = E(X -c) = -+¥¥(x-c) f (x)dxt = x-c - + ¥ ¥ tf (c+t)dt
0 + ¥
= - ¥ tf (c+t)dt+ 0 tf (c+t)dt
.
精品文档
而
0
tf (c+t)dtu =-t + 0¥ uf (c-u)du =- 0+¥uf (c-u)du =- 0+ ¥ uf (c+u)du
+¥
+ ¥
-¥
代入上式得 E(X)-c =- 0 uf (c+u)du+ 0 tf (c+t)dt = 0 ∴ E(X) =c
4-12 解:
+¥
0+ ¥ -
x
dx = 2;
(1)E(Y) = E(2X) = 2E(X) = 2 - ¥ xf (x)dx = 2 xe
(2)E(Y) = E(e-2X ) = -+¥¥e-2x f (x)dx = 0+¥e-3xdx = 1 3 。
4-13 略 4-14 解:
+¥
+¥
1
1
1
1 7
E(X) = -¥
-¥
xf (x, y)dxdy = 0 x 0 (x+ y)dydx = 0 x(x+ 2)dx = 12 ;
由对称性,得 E(Y) =
;
+¥ +¥
1
1
1
1
2
1 1
E(XY) = -¥ -¥ xyf (x, y)dxdy = 0 x 0 y(x+ y)dydx = 0 (2 x + 3 x)dx = 3 。
4-15 解:∵ X,Y 相互独立,
+¥
+ ¥
E(XY) = E(X)E(Y) = -¥ xfX (x)dx× -¥ yfY (y)dy ∴
= 012x2dx× 5+¥ ye-(
-5)
dy = 2′ 5+ 5+ ¥e-( -5)dy = 4
4-16 解:记 q =1- p,则
E(X) = k=1 kP(X = k) = k=1 k× pqk-1 = p k=1 kqk-1 = p k= 1 d (qk) = p d
???k= 1 pk÷ ÷÷÷
dq dq
.
精品文档
= p d q ÷= p d 1
1-q (1-q) -1÷= p d 1 ÷= p 1 p
2
= 1 dq 1-q dq 1-q dq
E(X 2) = k2P(X = k) = k2 × pqk-1 = p [k(k-1)+k]qk-1
k=1
k=1
k=1
= p q k=2
k=1
k=2
k=1
k(k-1)qk-2 + kqk-1 = p q d22 (qk)+ kqk-1 = pq d22 ??? p k÷÷÷+ 1
dq dq
k=1
p
= pq d22 ???1-1q÷÷÷÷+ 1p = pq (1-2q)3 + 1p = 2-p2p = 1+p2q dq
1q 1q1p
∴ D(X) = E(X 2)-[E(X)]2 = +2- 2 = 2 = -2。
p p p p
4-17 设随机变量X服从瑞利分布,其概率密度为 ì? x2
f
(x)=???í?s x2 e-2s2 x>0 ???? 0 x£0
其中
s>0为常数,求E(X ), D(X) 。
+¥
x -
+¥ -
分部积分 +¥ -
22
x/s=t
解:
E(X)= 0 2
e 2xs22 dx=- 0 xde 2 s 2 x2 0
e 2xs22 dx s 2 p s
E(X 2) 4-18 解:
ò
=0+¥ x 32e-2xs22 dx分部积分2 s2 \\D(X)=E(X 2)-[E(X)]2 = 4-ps2 s 2
111
E(X) = E???n k=n1 Xk÷÷÷÷= n k=n1 E(Xk) = n ×nm= m
.