求平均值,适用于成品和薄片。 3)维氏硬度:是以~的负荷,将相对面夹角为136°的方锥形金刚石压入器压在材料表面,保持规定时间后卸载,测量压痕对角线长度,再按下式计算硬度:
HV=d2
维氏硬度适用于较大工件和较深表面层的硬度测定。还有小负荷维氏硬度,试验负荷为~,适用于较薄工件、工具表面或镀层硬度的测定;显微维氏硬度,试验负荷小于,适用于金属箔、极薄表面层的硬度测定。
5.什么是材料的疲劳有哪些指标反映材料的疲劳性能
答:1)疲劳是指材料在循环受力(拉伸、压缩、弯折、剪切等)下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹或使裂纹进一步扩展直到完全断裂的现象。
2)疲劳性能是材料抵抗疲劳破坏的能力,常以S-N曲线表征,S为应力水平,N为疲劳寿命,即在循环载荷下,产生疲劳破坏所需的应力或应变循环数。 6.什么是热膨胀其受什么因素影响
答:1)大多数物质的体积都随温度的升高而增大,这种现象称为热膨胀。
2)材料的热膨胀性与材料中原子结合情况有关,结合键越强则原子间作用力越大,原子离开平衡位置所需的能量越高,则热膨胀系数越小。结合紧密的晶体的热膨胀系数比结构松散的非晶体的热膨胀系数大;共价键材料与金属相比,一般具有较低的热膨胀系数;离子键材料与金属相比,具有较高的热膨胀系数;高分子材料与大多数金属和陶瓷相比具有较大的热膨胀系数;塑料的线膨胀系数一般高于金属的3~4倍。 7.何谓压电效应简述其产生原因。
答:1)当对石英晶体在一定方向上施加机械应力时,在其两端表面上会出现数量相等、符号相反的束缚电荷;当作用力反向时,表面电荷电性也反号,而且在一定范围内电荷密度与作用力成正比。反之,石英晶体在一定方向的电场作用下,则会产生外形尺寸的变化,在一定范围内,其形变与电场强度成正比。前者称为正压电效应,后者称为逆压电效应,统称为压电效应。
2)晶体的压电效应的本质是因为机械作用(应力与应变)引起了晶体介质的“极化”,从而导致介质两端表面上出现符号相反的束缚电荷。 8.为什么紫外光谱测量必须使用石英比色皿
答:一般玻璃在紫外光区(320nm以下)有较强吸收,而石英和蓝宝石则可以较好地透过紫外线,因此紫外线波段的应用中常使用石英或蓝宝石作为材料。 9.根据材料的磁化率,可以将材料的磁性大致分为哪些各代表什么含义
答:根据材料的磁化率,可以将材料的磁性大致分为五类,即抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性。
1)抗磁性:某些材料在外磁场的作用下,磁化了的介质感生出的磁偶极子的作用与外磁场方向相反,使得磁化强度为负,这类材料的磁性称为抗磁性。如Bi、Cu、Ag、Au等金属。
2)顺磁性:顺磁性物质的主要特征是不论外加磁场是否存在,原子内部存在永久磁矩。但在无外加磁场时,由于顺磁场的原子做无规则的热运动,宏观表现为无磁性。在外加磁场的作用下,每个原子磁矩呈比较规则的取向,物质呈现极弱的磁性。顺磁性物质主要有过渡元素、稀土元素、镧系元素及铝、铂等金属。
3)铁磁性:铁、钴、镍室温下的磁化率可达103数量级,磁偶极子同向排列,属于强磁性物质,这类物质的磁性称为铁磁性。
4)反铁磁性:某些材料在外磁场作用下,尽管每个磁偶极子的强度很高,但相邻的磁偶极子所产生的磁矩反向排列,磁化强度大小相等、方向相反,相互抵消。这类材料称为
反铁磁性材料,其磁化强度为零。反铁磁性物质大都是非金属化合物。 5)亚铁磁性:在铁氧体(Fe3O4)中A位离子与B位离子的磁偶极子存在反相平行特性,磁偶极子的强度和离子数目也可能不相等,从而导致其磁性不会完全消失,往往保留了剩余磁矩,表现出一定的铁磁性,称为亚铁磁性或铁氧体磁性。 10.举例说明材料的工艺性能。 答:1)铸造性能
铸造性能是指材料用铸造方法获得优质铸件的性能。它取决于材料的流动性和收缩性。流动性好的材料,充填铸模的能力强,可获得完整而致密的铸件;收缩率小的材料,铸造冷却后,铸件缩孔小,表面无空洞,不会因收缩不均匀而引起开裂,尺寸比较稳定。金属材料中铸铁、青铜有较好的铸造性能,可以铸造一些形状复杂的铸件。工程塑料在某些成形工艺(如注射成形)方法中要求流动性好、收缩率小。 2)塑性加工性能
塑性加工性能是指材料通过塑性加工(锻造、冲压、挤压、轧制等)将原材料(如各种型材)加工成优质零件(毛坯或成品)的性能。它取决于材料本身塑性高低和变形抗力(抵抗变形能力)的大小。
塑性加工的目的是使材料在外力(载荷)作用下产生塑性变形而成形,获得较好的性能。塑性抗力小表示材料在不太大的外力作用下就可进行变形。金属材料中铜、铝、低碳钢具有较好的塑性和较小的变形抗力,容易塑性加工成形,而铸铁、硬质合金则不能塑性加工成形。热塑性塑料可通过挤压和压塑成形。 3)热处理性能
热处理性能主要是指钢接受淬火的能力(即淬透性),用淬硬层深度来表示。不同钢种,接受淬火的能力不同。合金钢淬透性能比碳钢好,这意味着合金钢的淬硬层深度厚,也说明较大零件用合金钢制造后可以获得均匀的淬火组织和力学性能。 4)焊接性能
焊接性能是指两种相同或不同的材料,通过加热、加压或两者并用将其连接在一起所表现出来的性能。影响焊接性能的因素很多,导热性过高或过低、热膨胀系数大、塑性低或焊接时容易氧化的材料,焊接性能一般较差。焊接性能差的材料焊接后,焊缝强度低,还可能出现变形、开裂现象。选择特殊焊接工艺不仅可以使金属与金属焊接,还可以使金属与陶瓷、陶瓷与陶瓷、塑料与烧结材料焊接。 5)切削性能
切削性能是指材料用切削刀具进行加工时所表现出来的性能。它取决于刀具使用寿命和被加工零件的表面粗糙度。凡使刀具使用寿命长,加工后表面粗糙度低的材料,其切削性能好;反之则切削性能差。金属材料的切削性能主要与材料的种类、成分、硬度、韧性、导热性等因素有关。一般钢材的理想切削硬度为HB160~230。钢材若硬度太低,切削时容易“黏刀”,使表面粗糙度高;若硬度太高,则切削时易磨损刀具。
第五章 金属材料
一.填空题
1.金属通常可分为 黑色金属 与 有色金属 两大类,前者包括铁、锰、铬及其合金,主要是铁碳合金,常作为结构材料使用;有色金属通常指除钢铁之外的所有金属,常作为 功能材料 使用。
2.大多数金属单质采取的密堆积型式有立方最紧密堆积、六方最紧密堆积、体心立方密堆积 三种。
3.导电性Al>Zn,Cu>Fe。
4.根据溶质原子在溶剂晶格中占据的位置不同,可将固溶体分为置换固溶体、间隙固溶
体、缺位固溶体 三种。
表示屈服强度值为235MPa的A级沸腾钢。
6.根据铝合金的成分及生产工艺特点,可将铝合金分为变形铝合金、铸造铝合金 两类。 7.冶金的分类方法很多,根据过程性质可分为物理冶金、化学冶金;根据冶金工艺过程不同分为火法冶金、湿法冶金、电冶金。 二.名词解释
1.光电效应:金属在短波辐射照射下能放出电子的现象称为光电效应。
2.合金:指由两种或两种以上的金属元素(或金属元素与非金属元素)组成的具有金属性质的物质。
3.固溶体:合金在固态下由不同组元互相溶解而形成的相称为固溶体。
4.间隙化合物:是由过渡元素与硼、碳、氮、氢等原子直径较小的非金属元素形成的化合物。
5.奥氏体:碳在γ-Fe(晶胞参数a=356pm)中的间隙固溶体。 6.马氏体:α- Fe中碳含量可达到%的过饱和固溶体。 三.简答题
1.为何晶粒金属的强度和塑性都比粗晶粒高
答:金属在弹性形变时,晶格形状发生暂时的变化,原子间距改变,除去外力后又恢复原状。塑性变形时,晶体内原子沿晶面滑动,除去外力后不复原。钢材是由许多晶粒组成的,晶粒取向和晶粒间的晶界对变形影响很大。滑动一般不易穿过晶界,而在晶界上产生应力集中,这种集中的应力再加上外力,可使相邻并未产生滑动的晶粒开始滑动。这样滑动由少数晶粒传布到整体,不同取向的晶粒相互制约、相互协调,以适应外力的影响。所以晶粒金属的强度和塑性都比粗晶粒高。
2.为何不能在室温下连续地将一块钢锭经多次轧制而制成薄钢板,而必须经过若干次轧制和加温再结晶的重复工序,才能制出合格的钢板
答:经过塑性变形后的金属,由于晶面之间产生滑动、晶粒破碎或伸长等原因,致使金属产生内应力,从而发生硬化以阻止再产生滑动,这使金属的强度、硬度增加,塑性、韧性降低。硬化的金属结构处于不稳定的状态,有自发地向稳定状态转化的倾向。加热提高温度,原子运动加速可促进这种转化以消除内应力。加热时应力较集中的部位,能量最高,优先形成新的晶核,进行再结晶。经再结晶的金属硬度和强度降低,塑性和韧性提高,使金属恢复到变形前的性能。钢锭经过锻炼轧制,将粗晶粒的结构破碎成小晶粒,同时使原来晶界间的微隙弥合,成为致密的结构,从而大大提高了其机械性能。 3.简述储氢合金的储氢原理。
答:在一定温度和压力下,许多金属、合金或金属间化合物与氢能生成金属氢化物。反应过程一般是在吸收少量的氢时,金属、合金或金属间化合物的结构不变,当氢含量提高到一定量时氢与金属、合金或金属间化合物化合生成金属氢化物,如果氢压高,可以形成过饱和氢化物。金属、合金或金属间化合物与氢的反应是可逆过程,改变温度和压力条件可以使金属氢化物释放出氢。储氢材料表面由于氧化膜及吸附其他气体分子,初次使用一般几乎无吸氢能力,或者需经历较长时间。通常要进行活化处理,其工艺是在高真空中加热到300 0C后,通以高纯氢,如此反复数次破坏表面氧化膜并被净化,而获得良好的反应活性。
4.简述形状记忆合金的特征。
答:材料在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某数值时,材料会自动回复到变形前原有的形状,似乎对以前的形状仍保持着记忆。
第六章 无机非金属材料
一.填空题
1. 典型的无机非金属材料的晶体结构有 AX型晶体、AX2型晶体、A2X3型晶体、ABO3型晶
体、AB2O4型晶体、金刚石和石墨的晶体、硅酸盐晶体等类型。
2. P2O5、SiO2、TiO2、Al2O3、Fe2O3这几种金属氧化物中,酸性最强的是P2O5,碱性最强的
是Fe2O3。
3. 陶瓷材料按化学成分分为 氧化物陶瓷、碳化物陶瓷、氮化物陶瓷、硼化物陶瓷 等几
种。 4. 普通陶瓷是用 黏土(Al2O3?2SiO2?H2O)、长石(K2O?Al2O3?6SiO2,Na2O?Al2O3?6SiO2)、石英(SiO2)等原料烧制而成。
5. 在硅酸盐水泥中有四种矿物质,即硅酸三钙(3CaO?SiO2,简写为C3S)、硅酸二钙(2CaO
?SiO2,简写为C2S)、铝酸三钙(3CaO?Al2O3,简写为C3A)、铁铝酸四钙(4CaO?Al2O3?Fe2O3,简写为C4AF)。
6. 水泥凝结硬化分为三个阶段,分别是溶解期、胶化期、硬化期(结晶期)。 二.简答题
1.无机非金属材料的结合键包括几类由它们组成的材料性能有何区别 答:1)无机非金属材料的结合键包括共价键和离子键两类;
2)键的比例对性能具有决定性作用,由于二者具有相对高的能量,其混合键的键能也比较大,一般为100-500 kJ/mol(金属为60-250 kJ/mol),从而给无机非金属材料带来熔点高、硬度高、脆性大、透明度高、导电性低的性质特点。 2.试画出NaCl晶体结构原子空间分布图。 3.试描述无机非金属材料的各种性能。 答:1)热力学性能:与金属材料和高分子材料相比,耐高温是陶瓷材料的优异特性之一; 2)力学性能:与金属材料相比,无机非金属材料由于化学键多为离子键和共价键,键能高且键具有明显的方向性,所以晶体结构复杂,其弹性、硬度、塑性、强度、断裂和冲击性能等与金属材料差异较大;
3)电学性能:金属能导电,主要是其具有核外自由运动的自由电子,而无机非金属材料一般都不具有自由电子,所以导电性较差,那意味着此类材料多为良好的绝缘体; 4)磁学性能:无机非金属材料具有强磁性、高电阻和低松弛损失等特性,将其用于电子技术中的高频器件比用磁性金属优越;
5)光学性能:无机非金属材料光学性能具有多样性和复杂性,主要包括对光的折射、反射、吸收、散射和透射,以及受激辐射光放大的特性等多方面;
6)化学性能:无机非金属材料多由氧化物组成,随着其键合力的增加而酸性越强,碱性越弱。
4.陶瓷材料都包括哪些陶瓷其性能、应用有何区别
答:1)氧化物陶瓷:种类繁多,在陶瓷家族中占有非常重要的地位,最常用的氧化物陶瓷有Al3O2、SiO2、ZrO2、MgO、CeO2、CaO2、Cr2O3、莫来石(Al3O2?SiO2)和尖晶石(MgAl2O4)等,陶瓷中的Al3O2和SiO2相当于金属材料中的钢铁和铝合金一样受到广泛应用:
2)碳化物陶瓷:一般具有比氧化物更高的熔点,最常用的是SiC、WC、B4C、TiC等,碳化物陶瓷在制备过程中需要气氛保护;
3)氮化物陶瓷:应用最广泛的是Si3N4,其具有优良的综合力学性能和耐高温性能,另外,TiN、BN、AlN等氮化物陶瓷的应用也日趋广泛;
4)硼化物陶瓷:应用并不广泛,主要是作为添加剂或第二相加入其它陶瓷基体中,以达到改善性能的目的。
5.水泥水化硬化过程如何 答:水泥的水化硬化过程:
3CaO?SiO2 +nH2O ? 2CaO?SiO2(n-1)H2O + Ca(OH)2 2CaO?SiO2 +mH2O ? 2CaO?SiO2?mH2O 3CaO?Al2O3 + 6H2O ? 3CaO?Al2O3?6H2O
4CaO?Al2O3?Fe3O4 + 7H2O ? 3CaO?Al2O3?6H2O + CaO?Fe3O4?H2O 6.功能陶瓷都包括哪些陶瓷分别描述其性能特点。
答:1)半导体陶瓷:其为导电性能介于导体和绝缘体之间的一类陶瓷,种类繁多。当温度、湿度、电场、光等其中一个条件发生变化时,导电性会产生变化,相应的称为热敏、湿敏、磁敏、光敏等半导体类陶瓷。主要用于自动控制的传感器,某些也可利用电阻特性作为高温发热元件或导电原件;
2)压电陶瓷:在石英、钛酸钡、锆钛酸铅(PZT)及锆钛酸铅镧(PLZT)等物质的两界面上加一定的电压,将产生一定的机械变形,如电压为交变电压,这些物质则相应产生交变振动,且这种过程具有可逆性,这种现象称为压电效应。利用正、逆压电效应可实现机械能和电能的相互转换,如常见的燃气及气体打火机点火器、音乐卡及手机中的电声喇叭、医疗及工业用的超声检测仪探头及其他换能器等电器元件都有压电陶瓷的应用; 3)磁性陶瓷:在磁场中能被强烈磁化的陶瓷称为磁性陶瓷。其中铁酸盐的磁性陶瓷称为铁氧体。软磁材料是那些易于反复磁化的材料,其磁导率高,但磁矫顽抗力小,电动机、变压器的硅钢片都是典型的软磁材料。软磁铁氧体包括Mn-Zn、Fe-Si、Fe-Ni、Ni-Zn系铁氧体,主要用于感应铁心、电视机显像管偏转线圈及行输出变压器。
硬磁材料与软磁材料正好相反,在磁场中难以被磁化,并在撤去磁场后仍保持高的剩余磁化强度。主要包括钡和锶的铁氧体和稀土磁体,其中稀土钕-铁-硼磁体为目前最强磁性的永磁材料,用于制造器件可大大降低重量和尺寸,这对于航空航天工业具有重要的意义。其已广泛用于扬声器、永磁发电机和电动机,及各种磁性仪器仪表。
4)生物陶瓷:生物陶瓷在人体内化学稳定性好,组织相容性好,无各种排异现象,其抗压强度高,易于高温消毒,是牙齿、骨骼、关节等硬组织良好的置换修复材料,但脆性大、成形加工较难是其主要缺点。
第七章 高分子材料
一、 填空题
1. 常把生成高分子化合物的小分子原料称为单体,将存在于聚合物分子中重复出现的原子团称为结构单元,高聚物中结构单元的数目称为聚合度。
2. PP、PB、PS、PVC分别为聚丙烯、聚丁二烯、聚苯乙烯、聚氯乙烯的缩写。
3. 高分子的结构指单个高分子链的结构和形态,包括近程结构和远程结构。前者属于化学结构,又称一级结构,包括高分子链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序等后者指分子的尺寸、形态,链的柔顺性以及分子在环境中的构想,又称二级结构。
4. 自由基型聚合反应主要包括链引发、链增长、链终止等基元反应。 5. 阴离子聚合机理的特点是快引发,慢增长,无终止。
6. 酚醛塑料由酚醛树脂外加添加剂构成,是世界上最早实现工业化生产的塑料;产量最大的合成橡胶是丁苯橡胶。聚丙烯腈纤维蓬松柔软、轻盈、保暖性好,性能极似羊毛,