称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
二、填空题
13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函
1解析:
3【解析】
分析:在图形左侧添加正方形网格,分别延长AB、AC,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案. 详解:如图所示,
由图形可知,?AFE?90?,AF?3AC,EF?AC, ∴tan∠BAC=故答案为
EFAC1??. AF3AC31. 3点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.
14.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4
解析:4 【解析】 【分析】 【详解】
解:连接AC交OB于D.
∵四边形OABC是菱形, ∴AC⊥OB. ∵点A在反比例函数y=∴△AOD的面积=
2的图象上, x1×2=1, 2∴菱形OABC的面积=4×△AOD的面积=4 故答案为:4
15.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案
解析:5. 【解析】 【分析】
过A作AC?x轴,过B作BD?x轴于D,于是得到?BDO??ACO?90?,根据反比例函数的性质得到S?BDO?251,S?AOC?,根据相似三角形的性质得到22OBS?BOD?OB??5,根据三角函数的定义即可得到结论. ,求得???5?OAS?OAC?OA?【详解】
过A作AC?x轴,过B作BD?x轴于, 则?BDO??ACO?90?, ∵顶点A,B分别在反比例函数y?∴S?BDO?1?5?x?0?与y??x?0?的图象上, xx51,S?AOC?, 22∵?AOB?90?,
∴?BOD??DBO??BOD??AOC?90?, ∴?DBO??AOC, ∴?BDO?OCA,
∴
S?BODS?OAC5?OB?2????1?5, ?OA?22∴
OB?5, OAOB?5, OA∴tan?BAO?故答案为:5.
【点睛】
本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.
16.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=OA=6∴OP=AB=3∴ 解析:22 【解析】
试题分析:连接OP、OQ,
∵PQ是⊙O的切线,∴OQ⊥PQ. 根据勾股定理知PQ2=OP2﹣OQ2, ∴当PO⊥AB时,线段PQ最短.此时, ∵在Rt△AOB中,OA=OB=∴OP=∴
AB=3.
. ,∴AB=
OA=6.
17.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆
锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π
解析:15π 【解析】
【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
【详解】设圆锥母线长为l,∵r=3,h=4, ∴母线l=r2?h2?5,
11×2πr×5=×2π×3×5=15π, 22故答案为15π.
∴S侧=
【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
18.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G
解析:【解析】
试题解析:如图,折痕为GH,
cm.
由勾股定理得:AB=由折叠得:AG=BG=∴∠AGH=90°,
AB=
=10cm,
×10=5cm,GH⊥AB,
∵∠A=∠A,∠AGH=∠C=90°, ∴△ACB∽△AGH, ∴∴∴GH=
, , cm.
考点:翻折变换
19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE?tan60°=cm∴S△OCD 解析:3
【解析】 【分析】 【详解】
如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD; ∵此多边形是正六边形, ∴∠COD=60°; ∵OC=OD,
∴△COD是等边三角形, ∴OE=CE?tan60°=∴S△OCD=
8?3?43cm, 211CD?OE=×8×43=163cm2. 22163=963cm2. ∴S正六边形=6S△OCD=6×
考点:正多边形和圆
20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 - 解析:
1 2【解析】 【分析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得. 【详解】 列表如下:
-2 -1 1 2