2020年中考数学试卷(含答案)
一、选择题
1.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )
A.1 个 A.?2
2B.2 个 B.0
C.3 个 C.1
D.4个 D.2
2.下列四个实数中,比?1小的数是( )
3.将抛物线y?3x向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A.y?3(x?2)2?3 B.y?3(x?2)2?3 C.y?3(x?2)2?3 D.y?3(x?2)2?3 4.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )
A.200米
B.2003米
C.2203米
D.100(3?1)米
5.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为( )
A.
1 2B.5 C.53 2D.53 6.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A.2
B.3
C.5
D.7
7.如图,在ABC中,?ACB?90?,分别以点A和点C为圆心,以大于
1AC的长为2半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接
CD.若?B?34?,则∠BDC的度数是( )
A.68? B.112? C.124? D.146?
8.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A.94 9.函数y?A.x≠
B.95分
C.95.5分
D.96分
2x?1中的自变量x的取值范围是( )
B.x≥1
C.x>
1 21 2D.x≥
1 210.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6 B.8 C.10 D.12
11.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )
A.
2π﹣23 3B.
1π﹣3 3C.
4π﹣23 3D.
4π﹣3 312.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
二、填空题
13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.
14.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=
2的图像上,则菱形的面积为_______. x
15.如图,Rt?AOB中,?AOB?90?,顶点A,B分别在反比例函数y?1?x?0?与xy??5?x?0?的图象上,则tan?BAO的值为_____. x
16.如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为 .
17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2. 18.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与
点B重合,那么折痕长等于 cm.
19.正六边形的边长为8cm,则它的面积为____cm2.
20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
三、解答题
21.如图,在平面直角坐标系中,直线AB与函数y=
k(x>0)的图象交于点A(m,x2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使
1OC,且△ACD的面积是6,连接BC. 2(1)求m,k,n的值; (2)求△ABC的面积.
OD=
22.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.
求证:BC=ED.
23.如图,?ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA?6cm,点
D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将?ACD绕
点C逆时针方向旋转60°得到?BCE,连接DE. (1)如图1,求证:?CDE是等边三角形;
(2)如图2,当6 (3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由. 24.解方程: x1﹣=1. x?3x25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据: 男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188 女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184. 根据统计数据制作了如下统计表: 个数x 男生 女生 150≤x<170 5 3 170≤x<185 8 8 185≤x<190 5 a x≥190 2 3 两组数据的极差、平均数、中位数、众数如表所示: 男生 女生 极差 55 43 平均数 178 181 中位数 b 184 众数 c 186 (1)请将上面两个表格补充完整:a=____,b=_____,c=_____; (2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人? (3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由. 【参考答案】***试卷处理标记,请不要删除