什么是主频和睿频?cpu主频越高越好吗
本文主要是关于主频和睿频的相关介绍,并着重对主频和睿频的不同进行了详尽的区分。
主频CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。
CPU的主频随着技术进步和市场需求的提升而不断提高,但外部设备所能承受的频率极限与CPU核心无法相提并论,于是外频的概念产生了。一般说来,我们能见到的标准外频有100MHz、133MHz,甚至更高的166MHz,又有了200MHz的高外频。CPU的工作频率(主频)包括两部分:外频与倍频,两者的乘积就是主频。倍频的全称为倍频系数。CPU的主频与外频之间存在着一个比值关系,这个比值就是倍频系数,简称倍频。倍频可以从1.5一直到23以至更高,以0.5为一个间隔单位。外频与倍频相乘就是主频(主频=外频×倍频),所以其中任何一项提高都可以使CPU的主频上升。
我们知道,电脑有许多配件,配件不同,速度也就不同。在286、386和早期的486电脑里,CPU的速度不是太高,和内存保持一样的速度。后来随着CPU速度的飞速提升,内存由于电气结构关系,无法象CPU那样提升很高的速度(就算内存达到400、533,但跟CPU的几个G的速度相比,根本就不是一个级别的),于是造成了内存和CPU之间出现了速度差异。在486之前,CPU的主频还处于一个较低的阶段,CPU的主频一般都等于外频。而在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此出现了倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。倍频技术就是使外部设备可以工作在一个较低外频上,而CPU主频是外频的倍数。
在Pentium时代,CPU的外频一般是60/66MHz,从Pentium Ⅱ350开始,CPU外频提高到100MHz,CPU外频已经达到了200MHz。由于正常情况下外频和内存总线频率相同,所以当CPU外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。
CPU主频、外频和前端总线(FSB)频率的单位都是Hz,通常是以MHz和GHz作为计量单位。需要注意的是不要将外频和FSB频率混为一谈,我们时常在IT媒体上可以看见一些外频800MHz、533MHz的词语,其实这些是把外频和FSB给混淆了。例如Pentium 4处理器的外频目前有100MHz和133MHz两种,由于Intel使用了四倍传输技术,受益于Pentium4处理器的四倍数据传输(QDR,Quad data Rate)总线。该技术可以使系统总线在一个时钟周期内传送4次数据,也就是传输效率是原来的4倍,相当于用了4条原来的前端总线来和内存发生联系。在外频仍然是133MHZ(如P4 Northwood处理器)的时候,前端总线的速度增加4倍变成了133×4=533MHZ,当外频升到200MHZ,前端总线变成800MHZ,所以你会看到533前端总线的P4和800前端总线的P4,就是这样来的。他们的实际外频只有133和200。即FSB=CPU外频×4。AMD Athlon 64处理器基于同样的道理,也将会以200MHz外频支持800MHz的前端总线频率。但是对于AMD Athlon XP处理器,因其前端总线使用双倍数据传输技术(DDR,Double Date Rate),它的前端总线频率为外频的两倍,所以外频200MHz的Athlon XP处理器的前端总线频率为400MHz。对于早期的处理器,如Pentium III,其外频和前端总线频率是相等的。 前端总线
前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人
们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。
FSB是将CPU连接到北桥芯片的总线,也是CPU和外界交换数据的主要通道,因此前端总线的数据传输能力对整机性能影响很大,数据传输最大带宽取决于所有同时传输数据的宽度和传输频率,即数据带宽=总线频率×数据位宽÷8。例如Intel公司的PⅡ333使用6 6MHz的前端总线,所以它与内存之间的数据交换带宽为528MB/s =(66×64)/8,而其PⅡ350则使用100MHz的前端总线,所以其数据交换峰值带宽为800MB/s=(100×64)/8。再比如Intel 845芯片组只支持单通道DDR333内存,所以理论最高内存带宽为333MHz×8Bytes(数据宽度)=2.7GB/s,而Intel 875平台在双通道下的内存带宽最高可达400MHz×8Bytes(数据宽度)×2=6.4GB/s。PC机常用的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz几种。 外频
提到外频,我们就顺便再说一下PCI工作频率。电脑上的硬盘、声卡等许多部件都是采用PCI总线形式,并且工作在33MHz的标准工作频率之下。PCI总线频率并不是固定的,而是取决于系统总线速度,也就是外频。当外频为66MHz时,主板通过二分频技术令PCI设备保持33MHz的工作频率;而当外频提高到100MHz时,三分频技术一样可以令PCI设备的工作频率不超标;在采用四分频、五分频技术的主板上,当外频为133MHz、166MHz时,同样可以让PCI设备工作在33MHz。但是如果外频并没有采用上述标准频率,而是定格如75MHz、83MHz之下,则PCI总线依然只能用二分频技术,从而令PCI系统的工作频率为37.5MHz甚至是41.5MHz。这样一来,许多部件主必须工作在非额定频率之下,是否能够正常运作就要取决于产品本身的质量了。此时,硬盘能否撑得住是最关键的,因为PCI总线提升后,硬盘与CPU的数据交换速度增加,极有可能导致读写不正常,从而产生死机。