好文档 - 专业文书写作范文服务资料分享网站

标题-2017-2018学年高中数学三维设计人教A版浙江专版选修2-1:模块综合检测

天下 分享 时间: 加入收藏 我要投稿 点赞

模块综合检测

(时间120分钟 满分150分)

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)

π

1.命题“若△ABC有一内角为,则△ABC的三内角成等差数列”的逆命题( )

3A.与原命题同为假命题 B.与原命题的否命题同为假命题 C.与原命题的逆否命题同为假命题 D.与原命题同为真命题

解析:选D 原命题显然为真,原命题的逆命题为“若△ABC的三内角成等差数列,π

则△ABC有一内角为”,它是真命题.

3

2.抛物线y=ax2的准线方程是y=2,则a的值为( ) 1

A. 8C.8

1B.-

8D.-8

11

解析:选B 由y=ax2得x2=ay, ∴a=-8, 1

∴a=-. 8

3.下列说法中正确的是( )

A.一个命题的逆命题为真,则它的逆否命题一定为真 B.“a>b”与“a+c>b+c”不等价

C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0” D.一个命题的否命题为真,则它的逆命题一定为真

解析:选D 否命题和逆命题互为逆否命题,有着一致的真假性,故选D. 4.已知空间向量a=(1,n,2),b=(-2,1,2),若2a-b与b垂直,则|a|等于( ) 5 3A.

2C.

37 2

B.21 2

3 5D.

2

解析:选D 由已知可得2a-b=(2,2n,4)-(-2,1,2)=(4,2n-1,2). 又∵(2a-b)⊥b,∴-8+2n-1+4=0. 5

∴2n=5,n=.∴|a|=

2

253 51+4+=. 42

x2y2

5.双曲线-=1(mn≠0)的离心率为2,它的一个焦点与抛物线y2=4x的焦点重合,

mn则mn的值为( )

3

A. 1616

C. 3

3B. 88D. 3

解析:选A 抛物线y2=4x的焦点为F(1,0), x2y2

故双曲线-=1中,

mnm>0,n>0且m+n=c2=1.① 又双曲线的离心率e=c= m1m=,

4

m+n

=2,② m

?

联立方程①②,解得?3

n=?4.围为( )

A.(1,5) C.(1,5 ]

故mn=3

. 16

x2y2

6.若直线y=2x与双曲线2-2=1(a>0,b>0)有公共点,则双曲线的离心率的取值范

ab

B.(5,+∞) D.[5,+∞)

bb

解析:选B 双曲线的两条渐近线中斜率为正的渐近线为y=x.由条件知,应有>2,

aaa2+b2c

故e=a=a=

b?21+??a?>5.

x2y2

7.已知F1(-3,0),F2(3,0)是椭圆m+n=1的两个焦点,点P在椭圆上,∠F1PF2=α.当α=

2π时,△F1PF2面积最大,则m+n的值是( ) 3

B.15 D.1

A.41 C.9

1

解析:选B 由S△F1PF2=|F1F2|·yP=3yP,

2知P为短轴端点时,△F1PF2面积最大. 2π

此时∠F1PF2=,

3

得a=m=2 3,b=n=3,故m+n=15.

8.正△ABC与正△BCD所在平面垂直,则二面角ABDC的正弦值为( )

A.5

5

B.33 C.255

D.

63

解析:选C 取BC中点O,连接AO,DO.建立如图所示坐标系,设BC=1,

则A?0,0,32?

?

,B??0,-1?2,0??, D

?3?2,0,0??

.

∴=?

0,0,3??,=?1

32??0,2,2??

,=

?3?2,12,0??

. 由于

=?0,0,

3?2?

?

为平面BCD的一个法向量,可进一步求出平面ABD的一个法向量n=(1,-3,1),

∴cos〈n,

〉=

5

,∴sin〈n〉=255

,5

. 二、填空题(本大题共7小题,多空题每空3分,单空题每题4分,共36分) 9.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足·

=4,则动点

P的轨迹方程是________.

解析:由

·

=4得x×1+y×2=4,因此所求动点P的轨迹方程为x+2y-4=0.

答案:x+2y-4=0

10.点F是抛物线C:y2=2px(p>0)的焦点,l是准线,A是抛物线在第一象限内的点,直线AF的倾斜角为60°,AB⊥l于B,△ABF的面积为3,则p的值为________,点A坐标为________.

解析:设A(x,y),∵直线AF的倾斜角为60°,∴y=3??x-p

2??①,∵△ABF的面积为3,∴12·?p?x+2??·y=3②,∵A是抛物线在第一象限内的点,∴y2

=2px③,∴由①②③可得p=1,x=3

2

,y=3.

答案:1 ?3

?2,3??

11.已知P为抛物线C:y2=4x上的一点,F为抛物线C的焦点,其准线方程为____________,若准线与x轴交于点N,直线NP与抛物线交于另一点Q,且|PF|=3|QF|,则点P坐标为____________.

解析:∵y2=4x,∴焦点坐标F(1,0),准线方程x=-1.过P,Q分别作准线的射影分别为A,B,则由抛物线的定义可知:|PA|=|PF|,|QF|=|BQ|,∵|PF|=3|QF|,∴|AP|=3|QB|,

标题-2017-2018学年高中数学三维设计人教A版浙江专版选修2-1:模块综合检测

模块综合检测(时间120分钟满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)π1.命题“若△ABC有一内角为,则△ABC的三内角成等差数列”的逆命题()3A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆
推荐度:
点击下载文档文档为doc格式
6pnau4mvll1xu1x81dzc4m0xd0pw4b00nm1
领取福利

微信扫码领取福利

微信扫码分享