考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法. 【思路点拨】(Ⅰ)(Ⅱ)应用定义法证明、求解;(Ⅲ)对n分奇数、偶数进行讨论.
【规范解答】(I)由题设可知,a2?a1?2?2,a3?a2?2?4,a4?a3?4?8,a5?a4?4?12,
a6?a5?6?18。从而
a6a53??,所以a4,a5,a6成等比数列. a5a42(II)由题设可得a2k?1?a2k?1?4k,k?N*
所以a2k?1?a1??a2k?1?a2k?1???a2k?1?a2k?3??...?a3?a1? ?4k?4?k?1??...?4?1 ?2k?k?1?,k?N*.
2由a1?0,得a2k?1?2k?k?1? ,从而a2k?a2k?1?2k?2k.
?n2?1n,n为奇数2??1?1??n?2所以数列?an?的通项公式为an??或写为an?,n?N*. ?224?n,n为偶数??22(III)由(II)可知a2k?1?2k?k?1?,a2k?2k,以下分两种情况进行讨论:
(1) 当n为偶数时,设n=2m?m?N*?
k2若m?1,则2n???2,若m?2,则
k?2aknmm2k?m?1?2k?1??k24k2m?14k2?4k?1??????2?? ?aaa2k2kk?1??k?2kk?1k?1k?1k?12k2k?1nm?1?4k2?4k?1?1?11????2m?2?? ?2m???????? ?2k?k?1??2?kk?1??k?1?2k?k?1?k?1?m?122 ?2m?2?m?1??n1?1?311??2n??. ??2?m?2nnk2313k2所以2n????,从而?2n???2,n?4,6,8,....
2n2k?2akk?2ak(2)当n为奇数时,设n?2m?1?m?N*?.
?ak?2nk2k??kk?2ak2m2?2m?1??a2m?12?2m?1? 31?4m???22m2m?m?1?2?4m?n1131??2n?? 22?m?1?2n?1nk2313k2所以2n??,从而?2n?????2,n?3,5,7,....
2n?12k?2akk?2ak综合(1)和(2)可知,对任意n?2,n?N*,有
3?2n?Tn?2. 2