中考数学培优专题复习平行四边形练习题及答案解析
一、平行四边形
1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值; (3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1,
∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中,
?APB??BPH{?A??BQP?90?, BP?BP∴△ABP≌△QBP(AAS), ∴AP=QP,AB=BQ, 又∵AB=BC, ∴BC=BQ.
又∠C=∠BQH=90°,BH=BH, 在△BCH和△BQH中,
BC?BQ{?C??BQH?90?, BH?BH∴△BCH≌△BQH(SAS), ∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. ∴△PDH的周长是定值.
(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕, ∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°, 在△EFM和△BPA中,
?EFM??ABP{?EMF??A, FM?AB∴△EFM≌△BPA(AAS). ∴EM=AP. 设AP=x
在Rt△APE中,(4-BE)2+x2=BE2.
x2解得BE=2+,
8x2∴CF=BE-EM=2+-x,
81x2∴BE+CF=-x+4=(x-2)2+3.
44当x=2时,BE+CF取最小值, ∴AP=2.
考点:几何变换综合题.
2.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,求EF的长.
【答案】(1)证明见解析;(2)【解析】
413. 3分析:(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;
(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.
详解:(1)证明:∵四边形ABCD是矩形,O是BD的中点, ∴∠A=90°,AD=BC=4,AB∥DC,OB=OD, ∴∠OBE=∠ODF,
在△BOE和△DOF中,
??OBE??ODF? ?OB?OD??BOE??DOF?∴△BOE≌△DOF(ASA), ∴EO=FO,
∴四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,BD⊥EF, 设BE=x,则 DE=x,AE=6-x, 在Rt△ADE中,DE2=AD2+AE2, ∴x2=42+(6-x)2, 解得:x= ∵BD=∴OB=
13, 3AD2?AB2 =213,
1BD=13, 2∵BD⊥EF,
∴EO=BE2?OB2=∴EF=2EO=
213, 3413. 3点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键
3.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)请问EG与CG存在怎样的数量关系,并证明你的结论;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)
【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立
【解析】 【分析】
(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立. 【详解】
(1)CG=EG.理由如下:
∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=
1FD,21FD,∴CG=EG. 2(2)(1)中结论仍然成立,即EG=CG.
同理.在Rt△DEF中,EG=
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;
在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG.
∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.
证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.
在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE ∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形. ∵MG=CG,∴EG=
1MC,∴EG=CG. 2(3)(1)中的结论仍然成立.理由如下:
过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N. 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形. ∵G为CM中点,∴EG=CG,EG⊥CG