好文档 - 专业文书写作范文服务资料分享网站

信号与系统第二版课后习题解答(3-4)奥本海姆

天下 分享 时间: 加入收藏 我要投稿 点赞

-------------精选文档-----------------

Chap 3

3.1 A continuous-time periodic signal x(t) is real value and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) are

*a1?a?1?2,a3?a?3?4j.

Express x(t) in the form

x(t)??Akcos(?kt??k)

k?0?Solution:

Fundamental period T?8.?0?2?/8??/4

x(t)?k?????akej?0kt?a1ej?0t?a?1e?j?0t?a3ej3?0t?a?3e?j3?0t

?2ej?0t?2e?j?0t?4jej3?0t?4je?j3?0t?3??4cos(t)?8sin(t)443.2 A discrete-time periodic signal x[n] is real valued and has a fundamental period N=5.The nonzero Fourier series coefficients for x[n] are

*j?/3a0?1,a?2?e?j?/4,a2?ej?/4,a4?a? 4?2eExpress x[n] in the form

x[n]?A0??Aksin(?kn??k)

k?1?Solution:

?j?/4j?/4for, a0?1, a?2?e , a2?e ,

a?4?2e?j?/3,

a4?2ej?/3

可编辑

-------------精选文档-----------------

x[n]?k??N??akejk(2?/N)n

?a0?a2ej(4?/5)n?a?2e?j(4?/5)n?a4ej(8?/5)n?a?4e?j(8?/5)n

?1?ej?/4ej(4?/5)n?e?j?/4e?j(4?/5)n?2ej?/3ej(8?/5)n?2e?j?/3e?j(8?/5)n4?8??1?2cos(?n?)?4cos(?n?)

545343?85??1?2sin(?n?)?4sin(?n?)

5456

3.3 For the continuous-time periodic signal

2?5?x(t)?2?cos(t)?4sin(t)

33Determine the fundamental frequency ?0 and the Fourier series coefficients ak such that

x(t)?Solution:

for the period ofcos(ofsin(k???jk?0tae?k.

?2?t)is T?3, the period 35?t)is T?6 3so the period ofx(t)is 6, i.e. w0?2?/6??/3

2?5?x(t)?2?cos(t)?4sin(t)

331 ?2?cos(2?0t)?4sin(5?0t)

21 ?2?(ej2?0t?e?j2?0t)?2j(ej5?0t?e?j5?0t)

21then, a0?2, a?2?a2? , a?5?2j, a5??2j

2

3.5 Let x1(t) be a continuous-time periodic signal with fundamental frequency ?1 and Fourier coefficients ak. Given that

可编辑

-------------精选文档-----------------

x2(t)?x1(1?t)?x1(t?1)

How is the fundamental frequency ?2 of x2(t) related to? Also, find a relationship between the Fourier series coefficients bk of x2(t) and the coefficients ak You may use the properties listed in Table 3.1. Solution:

(1). Because x2(t)?x1(1?t)?x1(t?1), then x2(t) has the same period as x1(t),

that is T2?T1?T, w2?w1 (2). bk??1T?T1?jkw2t?jkw1tx(t)edt?(x(1?t)?x(t?1))edt 211??TTT1x1(1?t)e?jkw1tdt??x1(t?1)e?jkw1tdt

TT?a?ke?jkw1?ake?jkw1?(a?k?ak)e?jkw1

3.8 Suppose given the following information about a signal x(t):

1. x(t) is real and odd.

2. x(t) is periodic with period T=2 and has Fourier coefficients ak. 3. ak?0 for |k|?1. 4

122|x(t)|dt?1. ?02Specify two different signals that satisfy these conditions. Solution:

x(t)?k?????akej?0kt

可编辑

-------------精选文档-----------------

while: x(t) is real and odd, then ak is purely imaginary and odd, a0?0, ak??a?k,.

and so

for

T?2, then ?0?2?/2??

ak?0 for k?1

x(t)?

k?????akej?0kt?a0?a?1e?j?0t?a1ej?0t

j?t ?a1(e?e?j?t)?2a1sin(?t)

1222222x(t)dt?a?a?a?2a?1 0?1112?0? ?

a1??2/2j x(t)??2sin(?t)

3.13 Consider a continuous-time LTI system whose frequency response is

H(j?)??h(t)e?j?tdt????sin(4?)?

If the input to this system is a periodic signal

?1,0?t?4 x(t)????1,4?t?8With period T=8,determine the corresponding system output y(t). Solution:

Fundamental period T?8.?0?2?/8??/4

x(t)?k??????akej?0kt

? y(t)?k????akH(jk?0)ejk?0t

可编辑

-------------精选文档-----------------

H(jk?0)?sin(4k?0)?4,.......k?0 ??k?0?0,.......k?0? y(t)?k?????akH(jk?0)ejkw0t?4a0

11418 Because a0??x(t)dt??1dt??(?1)dt?0

TT8084另:x(t)为实奇信号,则ak为纯虚奇函数,也可以得到a0为0。 So y(t)?0.

3.15 Consider a continuous-time ideal lowpass filter S whose frequency response is

??1,.......??100H(j?)??

??0,.......??100When the input to this filter is a signal x(t) with fundamental

period

T??/6and

Fourier series

coefficientsak, it is found that

x(t)?y(t)?x(t).

For what values of k is it guaranteed that ak?0? Solution:

for

Sx(t)?k??????akej?0kt

?

y(t)?k????akH(jk?0)ejk?0t

即对于所有的k,H(jk?0)?1

??1,.......??100H(j?)?for ?0,.......??100??也就是说k?0?100, T??/6??0?12

可编辑

信号与系统第二版课后习题解答(3-4)奥本海姆

-------------精选文档-----------------Chap33.1Acontinuous-timeperiodicsignalx(t)isrealvalueandhasafundamentalperiodT=8.ThenonzeroFourierseriescoefficientsforx(t)a
推荐度:
点击下载文档文档为doc格式
6p8gi52v2d5gf8x599ez10e609m8f001b9m
领取福利

微信扫码领取福利

微信扫码分享