类型3:因式分解并消去零因子,再计算极限
x2?6x?8x2?6x?8(x?4)(x?2)x?22?lim3-1 lim2 解: lim2=lim?
x?4x?5x?4x?4x?5x?4x?4(x?4)(x?1)x?4x?13x?3??x?2?x2?x?6?x2?x?6x?253-2 lim2 lim2?lim?lim?
x??3x?x?12x??3x?x?12x??3?x?3??x?4?x??3x?47x2?3x?2x2?3x?2(x?2)(x?1)x?113-3 lim 解 lim?lim?lim? 2x?2x?2x?2x?2x2?4(x?2)(x?2)x?24x?412xsinxsin1?x?1其他: lim?lim?2 ?lim2?0, limx?0x?0x?0x?01sinxsinxx?1?1x222x2?6x2x22x2?6x?5x2lim2?lim2?1, lim2?lim2?
x??3x?4x?5x??3xx??x?4x?5x??x3tan8xtan8x(0807考题)计算lim. 解: lim=limx.?8?2
x?0sin4xx?0sin4xx?0sin4x4xtan8x(0801考题. )计算limsinxsinx1sinx1?lim? . 解 limx?02xx?02xx?02x2x2?2x?3(x?1).(x?3)?1?(?1?3)??4 (0707考题.)lim=limx??1sin(x?1)x??1sin(x?1)(二) 求函数的导数和微分(1小题,11分)
(1)利用导数的四则运算法则 (u?v)??u??v? (uv)??u?v?uv?
(2)利用导数基本公式和复合函数求导公式
类型1:加减法与乘法混合运算的求导,先加减求导,后乘法求导;括号求导最后计算。
1-1 y?(xx?3)ex
1313?3?????3???33xx?xx222 解:y?=?x2?3?e??x2?3??e??xe??x?3?e??x?x2?3?ex
2???2?????1-2 y?cotx?x2lnx
解:y??(cotx)??(x2lnx)???csc2x?(x2)?lnx?x2(lnx)???csc2x?2xlnx?x
1-3 设y?extanx?lnx,求y?.
解: y??(extanx)??(lnx)??(ex)?tanx?ex(tanx)??11?extanx?exsec2x? xx类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导 2-1 y?sinx2?lnx,求y? 解:y??(sinx2)??(lnx)??2xcosx2?1 x2-2 y?cosex?sinx2,求
解:y??(cosex)??(sinx2)???sinex.(ex)??cosx2.(x2)???exsinex?2xcosx2
2-3 y?ln5x?e?5x,求, 解:y??(ln5x)??.(e?5x)??54lnx?5e?5x x类型3: 乘积与复合函数混合运算的求导,先乘积求导,后复合求导 y?excosx,求y? 。 解:y??(ex)?cosx?ex(cosx)??2xexcosx?exsinx
22222其他:y?2x?cosx,求y?。 x 解:y??(2x)??(cosx(cosx)?.x?cosx.(x)?xsinx?cosxxx?)?2ln2??2ln2?xx2x2
0807.设y?esinx?sinx2,求y? 解:y??(esinx)??(sinx2)??esinxcosx?2xcosx2
0801.设y?xex,求y? 解:y??(x)?ex?x(ex)??ex?2x2ex22222
0707.设y?esinx?x2,求 解:y??esinx.(sinx)??(x2)??cosxesinx?2x
0701.设y?lnx?cosex,求 解:y??(lnx)??sinex.(ex)??1?exsinex x(三)积分计算:(2小题,共22分)
凑微分类型1:??11dx???d() 2?xxcos计算?11cosxdx 解:xdx??cos1d(1)??sin1?c
?x2?xxxx21sinsinxdx??sin1d(1)?cos1?c
0707.计算?2xdx. 解:
xxxx2x1??ee10701计算?2dx. 解: ?2dx???exd()??ex?c
xxx1x1x11凑微分类型2:??1xdx?2??dx .计算?cosxxdx. 解: ?cosxxdx?2?cosxdx?2sinx?c
0807.计算?sinxxdx. 解:?sinxxdx?2?sinxdx??2cosx?c
0801.计算?exxdx 解:?exxdx?2?exdx?2ex?c
11凑微分类型3:??dx???dlnx, ??dx???d(a?lnx) xx计算?11dlnx1dx 解:?dx????du?ln|lnx|?c xlnxxlnxlnxu.计算?e1e2?lnxe2?lnx15dx 解: ?dx??(2?lnx)d(2?lnx)?(2?lnx)2?
11xx221e5 定积分计算题,分部积分法 11a?11xa?11a?1aa?1类型1:?xlnxdx?lnxdx?xlnx?xdx?lnx?x?c ??2a?1a?1a?1a?1(a?1)a