前言
因能力有限,资源有限,现粗略整理了《工程数学 线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。
第一章 行列式
1.利用对角线法则计算下列三阶行列式:
201abc111xyx?yx?yx. (1)1?4?1; (2)bca; (3)abc; (4)y?183caba2b2c2x?yxy201解 (1)1?4?1?2?(?4)?3?0?(?1)?(?1)?1?1?8?0?1?3?2?(?1)?8?1?(?4)?(?1)
?183=?24?8?16?4=?4
abc(2)bca?acb?bac?cba?bbb?aaa?ccc?3abc?a3?b3?c3
cab
111(3)abc?bc2?ca2?ab2?ac2?ba2?cb2?(a?b)(b?c)(c?a)
a2b2c2
xyx?yx?yx?x(x?y)y?yx(x?y)?(x?y)yx?y3?(x?y)3?x3 (4)yx?yxy?3xy(x?y)?y3?3x2y?3y2x?x3?y3?x3 ??2(x3?y3)
2.按自然数从小到大为标准次序,求下列各排列的逆序数:
1
(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … (2n?1) 2 4 … (2n); (6)1 3 … (2n?1) (2n) (2n?2) … 2. 解(1)逆序数为0
(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为
n(n?1): 23 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …
(2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1) (2n?2) (n?1)个
(6)逆序数为n(n?1)
3 2 1个 5 2,5 4 2个 ……………… …
(2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1) (2n?2) (n?1)个
4 2 1个 6 2,6 4 2个 ……………… …
(2n) 2,(2n) 4,(2n) 6,…,(2n) (2n?2) (n?1)个
3.写出四阶行列式中含有因子a11a23的项.
解 由定义知,四阶行列式的一般项为(?1)ta1p1a2p2a3p3a4p4,其中t为p1p2p3p4的逆序数.
2
由于p1?1,p2?3已固定,p1p2p3p4只能形如13□□,即1324或1342.对应的t分别为
0?0?1?0?1或0?0?0?2?2
??a11a23a32a44和a11a23a34a42为所求.
4.计算下列各行列式:
?4?1(1)??10??0解
125120244??21?3?12??; (2)?0??127????5042361??a?abacae????11????; (3)bd?cdde; (4)?2????0bfcf?ef??2????01b?1001c?10?0?? 1?d??41(1)
1001251202442c2?c30c4?7c374?112103002?104?1?104?110022?(?1)4?3=12?2 =122?14103?141031410c2?c3c1?12c3
991000?2=0 171714213?1(2)
1250
423611c4?c222213?11250423602r4?r202413?11221423402r4?r1 00213?11200423002=0 00?abacae?bce?111(3)bd?cdde=adfb?ce=adfbce1?11=4abcdef
bfcf?efbc?e11?1
a?1(4)
001b?1001c?1001?aba0r1?ar2?1b110?1cd00?101?aba00c1 =(?1)(?1)2?1?110?1dd 3