而利息负担总和为:D?C?A??A
5.2 等额本金还款模型的求解
银行除了向客户介绍上面的等额本息还款法外,还介绍另一种还款方法:等额本金还款法(递减法):每期还给银行相等的本金,但客户每月的利息负担就会不同. 利息负担应该是随本金逐期递减. 因此,客户每月除付给银行每期应付的本金外,还要付给银行没还的本金的利息.
(1)假设贷款期在1年以上.
等额本金还款法:每期还给银行相等的本金,但客户每月的利息负担不同。利息负担随本金的偿还逐期递减。所以客户每期应付金额中包含固定本金和一定利息。 设客户第i期应付的金额为
xi ( i = 1,2 …,n ) (单位:元)
因此,客户第一期应付的金额为 :x1?B?(A?B)?
第二期应付的金额为 :x2?B?(A?2B)?
计算一下,如果选择等额本金还款法,那么,在第53期,应该还银行4450.00元,在第53期,应该还银行4433.33元,与等额本息每月4440.82元相当. 而在第120期(若年利率不变),应该还银行3333.33元,即最后一次只还本金。可以看出,等额本金还款法的还款金额是逐级递减的。而且对于每月4440元的收入,等额本息还款法还款会更合适.
……
那么,客户第n期应付的金额为 :累计应付的还款总额为 :
C'?x1?x2???xn
xn?B?(A?nB)?
?利息负担总和为 :
A(2??n??)
2D'?C'?A?A(2??n??)?A
21 ??A(n?1)
2
(2)1年期的贷款,银行都要求客户实行到期一次还本付息,利随本清. 因此,1年期的还款总额为:
C'?(1??)A
而利息负担总和为:
D'?C'?A??A
6.结果分析与检验
6.1举例说明
以向银行贷款40万买房子,10年还款期为例. 比较等额本息和等额本金两种还款方法:
(1)等额本息:
利用上文模型求解得的公式可知 总的还款期数 n=12m=12×10=120 客户向银行贷款的月利率 α=β/12=0.5% 月供金额(月均还款总额)
A?(1??)n x? (单位:元)
(1??)n?1
400000?0.500?(1?0.500)120 ?1200(1?0.50)?1?4440.82
客户总的还款总额就等于:
C?nx
An?(1??)n ?
(1??)n?1?532898.41
利息负担总和等于:
An?(1??)nD?C?A??A n(1??)?1
?132898.41
(2)等额本金:
月供金额(客户第n期应付的金额)
xn?B?(A?nB)?
客户每期应还的本金
B?A?n?3333.33 所以月供金额如下:
x1 =5316.66
x2 =5300.00 x3 =5283.33
……
x53 =4450.00
x54 =4433.33
……
x120 =3333.33
累计应付的还款总额为 :
A(2??n??)
2400000?(2?0.500?120?0.500) ?
2C'?x1?x2???xn? =519000.00
利息负担总和为 :
A(2??n??)1D'?C'?A??A??A(n?1)
221 ??0.500?400000?(120?1)
2 =119000.00
计算贷款40万的两种还款方式所得各项数据对比如下表: (年利率为6% 来计算 (单位:元)) 贷款期限(年) 年利率(%) 10(等额本息) 10(等额本金) 比较(相差) 6 6 ------ 还款总额 532898.41 519000.00 13898.41 利息负担总和 月均还款总额 132898.41 119000.00 13898.41 4440.82 5313.66(第1期) ------ 虽然等额本金还款法比等额本息还款法要还更少的钱,但开头的几期或几十期的负担相对的会很重. 而等额本息还款法是每月还银行相等的金额,客户的负担没那么大,所以,银行一般都推荐等额本息还款法.
考虑到当前的利率情况,如提前还贷,应选择等额本金还款法。
6.2其他还款方式
银行推出不同的房贷方式,只是为了满足收入情况不同的各种借款人的需要。虽然理论上总还款额比较少的比较核算,实际生活中要看是否适合自己的经济状况。选择还款方式的关键是要与自己的收入趋势相匹配,尽量使收入曲线和供款相一致。在有还贷能力情况下尽量选择总还款额比较少。
等额本金还款:适合目前收入较高的人群。借款人在开始还贷时,每月负担比等额本息要重。随着时间推移,还款负担便会逐渐减轻。这种还款方式相对同样期限的等额本息法,总的利息支出较低。
等额本息还款法的特点是每个月归还一样的本息和,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士,
固定利率:进入加息周期较合算目前国借款人与银行已签订的房贷合同都是浮动利率的,央行每一次加息,借款人的月供就要有相应地增加。在贷款合同签订时,即设定好固定的利率,不论贷款期利率如何变动,借款人都按照固定的利率支付利息,但风险较大。
按期付息还本:适合房产投资客,借款人通过和银行协商,为贷款本金和利息归还制订不同还款时间单位。即自主决定按月、季度或年等时间间隔还款。实际上,就是借款人按照不同财务状况,把每个月要还的钱凑成几个月一起还。
还可以有递增法,气球贷等等,核心都是根据贷款人经济实力制定不同时期的本金和利息的还款额,理论上占用时间越少越省钱。
7 .模型的优缺点与改进方向
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并\解决\实际问题的一种强有力的数学手段。它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。数学建模是解决实际问题的一个很好的工具或方法,但其是通过抽象、简化建立能近似刻画并\解决\实际问题,也不可避免地在解决问题时有一些不足之处。
1、模型的优点:
(1)采用的数学模型有成熟的理论基础,可信度较高。 (2)本文建立离的模型有相应的软件支持,推光容易。
(3)本文建立的模型与实际紧密联系,考虑现实情况的多样性,从而使模型更贴近实际,更实用。
(4)本文用数学工具,严密对模型求解,具有科学性。
(5)为了更贴近实际,在静态模型的的基础上,考虑未来现金折现对模型进行改进,加以验证。
(6)借助图表,比较形象直观,从多方面对结果进行验证。
2、模型缺点:
(1)模型复杂因素较多,不能对其进行全面考虑。 (2)利率的精确度不同可能造成一定误差
(3)经济社会中随机因素较多,使模型不能将其准确反应出来
3、模型的改进:
(1)考虑通货膨胀等市场经济中的因素
(2)考虑国家政策、重大事件比如加息对人们还贷行为的影响 (3)对利率有更准确的计算方法
(4)考虑不同人群的消费观念和收入水平
参考文献
[1]邬国根 王泽文 《数学实验与建模初步》 东华理工大学 [2]中庚 《数学建模方法及其应用》 高等教育 [3]启源 《数学模型(第三版)》 高等教育 [4]光亭 裘哲勇主编 数学建模 高等教育.2010
购房贷款地数学建模
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)