好文档 - 专业文书写作范文服务资料分享网站

空间向量与立体几何教案 (2)

天下 分享 时间: 加入收藏 我要投稿 点赞

空间向量与立体几何

一、知识网络:

空间向量的加减运算 空间向量及其运算 空间向量的数乘运算 共线向量定理 共面向量定理 空间向量与立体几何 空间向量的数量积运算 空间向量基本定理 平行与垂直的条件 空间向量的坐标运算 立体几何中的向量方法 向量夹角与距离 直线的方向向量与平面的法向量 用空间向量证平行与垂直问题 求空间角 求空间距离

二.考纲要求:

(1)空间向量及其运算

① 经历向量及其运算由平面向空间推广的过程;

② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;

③ 掌握空间向量的线性运算及其坐标表示;

④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用

① 理解直线的方向向量与平面的法向量;

② 能用向量语言表述线线、线面、面面的垂直、平行关系;

③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);

④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

三、命题走向

本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。

预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。

第一课时 空间向量及其运算

一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。

二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。

学生阅读复资P128页,教师点评,增强目标和参与意识。

(二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念

向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。

表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。

说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。

2.向量运算和运算率

??OB?OA?AB?a?b B C ??BA?OA?OB?a?b ?OP??a(??R) ????加法交换率:a?b?b?a. ??????加法结合率:(a?b)?c?a?(b?c). ????数乘分配率:?(a?b)??a??b. ?b ?O a A 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。

3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量

????叫做共线向量或平行向量。a平行于b记作a∥b。

?? 注意:当我们说a、b共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当

??我们说a、b平行时,也具有同样的意义。

???????共线向量定理:对空间任意两个向量a(a≠0)、b,a∥b的充要条件是存在实数?使b=?a

??????(1)对于确定的?和a,b=?a表示空间与a平行或共线,长度为 |?a|,当?>0时与a同向,

?当?<0时与a反向的所有向量。

?(3)若直线l∥a,A?l,P为l上任一点,O为空间任一点,下面根据上述定理来推导OP的表达式。

推论:如果 l为经过已知点A且平行于已知非零向量a的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式 OP?OA?ta ①

其中向量a叫做直线l的方向向量。

????在l上取AB?a,则①式可化为 OP?(1?t)OA?tOB. ②

1时,点P是线段AB的中点,则 OP?1(OA?OB). ③ 22①或②叫做空间直线的向量参数表示式,③是线段AB的中点公式。

注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。⑶结合三角形法则记忆方程。

??4.向量与平面平行:如果表示向量a的有向线段所在直线与平面?平行或a在?平面内,我们就???说向量a平行于平面?,记作a∥?。注意:向量a∥?与直线a∥?的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

?????共面向量定理 如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数

当t????对x、y,使p?xa?yb.①

注:与共线向量定理一样,此定理包含性质和判定两个方面。

推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使

MP?xMA?yMB,④

或对空间任一定点O,有OP?OM?xMA?yMB.⑤

在平面MAB内,点P对应的实数对(x, y)是唯一的。①式叫做平面MAB的向量表示式。 又∵MA?OA?OM,.MB?OB?OM,.代入⑤,整理得

OP?(1?x?y)OM?xOA?yOB. ⑥

由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA、MB(或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。

???5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量,存在一个唯一的

????有序实数组x, y, z, 使p?xa?yb?zc.

???说明:⑴由上述定理知,如果三个向量a、b、c不共面,那么所有空间向量所组成的集合就是

???????????这个集合可看作由向量a、b、c生成的,所以我们把{a,b,c}?p|p?xa?yb?zc,x、y、z?R?,

???叫做空间的一个基底,a,b,c都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一

个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的

?概念;⑷由于0可视为与任意非零向量共线。与任意两个非零向量共面,所以,三个向量不共面就隐含

?着它们都不是0。

空间向量与立体几何教案 (2)

空间向量与立体几何一、知识网络:空间向量的加减运算空间向量及其运算空间向量的数乘运算共线向量定理共面向量定理空间向量与立体几何空间向量的数量积运算空间向量基本定理平行与垂直的条件空间向量的坐标运算立体几何中的向量方法向量夹角与距离直线的方向向量与平面的法向量用空间向量证平行与垂直问题求空间角求空间距离二.考纲要求
推荐度:
点击下载文档文档为doc格式
6otfv4csnq0sr9z0p01l1xu1x81dzc00o7x
领取福利

微信扫码领取福利

微信扫码分享