好文档 - 专业文书写作范文服务资料分享网站

上海中考数学知识点总结新

天下 分享 时间: 加入收藏 我要投稿 点赞

点P(x,y)在第一象限?x?0,y?0;点P(x,y)在第二象限?x?0,y?0;

点P(x,y)在第三象限?x?0,y?0;点P(x,y)在第四象限?x?0,y?0。 2、坐标轴上的点的特征

点P(x,y)在x轴上?y?0,x为任意实数;点P(x,y)在y轴上?x?0,y为任意实数; 点P(x,y)既在x轴上,又在y轴上?x,y同时为零,即点P坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x与y相等 点P(x,y)在第二、四象限夹角平分线上?x与y互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称?横坐标相等,纵坐标互为相反数 点P与点p’关于y轴对称?纵坐标相等,横坐标互为相反数 点P与点p’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于y;(2)点P(x,y)到y轴的距离等于x

22(3)点P(x,y)到原点的距离等于x?y

考点三、函数及其相关概念 (3~8分) 1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法

用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 考点四、正比例函数和一次函数 (3~10分)

第11页

1、正比例函数和一次函数的概念

一般地,如果y?kx?b(k,b是常数,k?0),那么y叫做x的一次函数。

特别地,当一次函数y?kx?b中的b为0时,y?kx(k为常数,k?0)。这时,y叫做x的正比例函数。

2、一次函数的图像

所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数y?kx?b的图像是经过点(0,b)的直线;正比例函数y?kx的图像是经过原点(0,0)的直线 k的符号 b的符号 函数图像 图像特征

y

图像经过一、二、三象限,y随x

b>0 0 x 的增大而增大。

k>0

y

图像经过一、三、四象限,y随x

b<0 0 x 的增大而增大。

图像经过一、二、四象限,y随x

b>0

0 x 的增大而减小

K<0 y

图像经过二、三、四象限,y随x

b<0

的增大而减小。

0 x

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质

第12页

一般地,正比例函数y?kx有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大; (2)当k<0时,图像经过第二、四象限,y随x的增大而减小。 5、一次函数的性质

一般地,一次函数y?kx?b有下列性质:

(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小 6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式y?kx(k?0)中的常数k。确定一个一次函数,需要确定一次函数定义式y?kx?b(k?0)中的常数k和b。解这类问题的一般方法是待定系数法。 考点五、反比例函数 (3~10分) 1、反比例函数的概念

一般地,函数y?k(k是常数,k?0)叫做反比例函数。反比例函数的解析式也可以写成y?kx?1的x形式。自变量x的取值范围是x?0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x?0,函数y?0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质

k反比例

y?(k?0)

函数 xk>0 k<0 k的符号

y y

图像

O x O x

①x的取值范围是x?0, ①x的取值范围是x?0, y的取值范围是y?0 y的取值范围是y?0; ②当k<0时,函数图像的两个分支分别

性质

②当k>0时,函数图像的两个分支分别 在第二、四象限。在每个象限内,y 在第一、三象限。在每个象限内,y 随x 的增大而增大。 随x 的增大而减小。

4、反比例函数解析式的确定

确定及诶是的方法仍是待定系数法。由于在反比例函数y?k中,只有一个待定系数,因此只需要一对x对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

第13页

5、反比例函数中反比例系数的几何意义 如下图,过反比例函数y?k(k?0)图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMONx的面积S=PM?PN=y?x?xy。

?y?

k,?xy?k,S?k。 x第七章 二次函数

考点一、二次函数的概念和图像 (3~8分) 1、二次函数的概念

一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x 的二次函数。

y?ax2?bx?c(a,b,c是常数,a?0)叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于x??b对称的曲线,这条曲线叫抛物线。 2a抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线y?ax2?bx?c与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

考点二、二次函数的解析式 (10~16分)

二次函数的解析式有三种形式:

(1)一般式:y?ax2?bx?c(a,b,c是常数,a?0) (2)顶点式:y?a(x?h)2?k(a,h,k是常数,a?0)

22(3)当抛物线y?ax?bx?c与x轴有交点时,即对应二次好方程ax?bx?c?0有实根x1和x2存

在时,根据二次三项式的分解因式ax?bx?c?a(x?x1)(x?x2),二次函数y?ax?bx?c可转化为两根式y?a(x?x1)(x?x2)。如果没有交点,则不能这样表示。 考点三、二次函数的最值 (10分)

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x??22b时,2a 第14页

y最值4ac?b2。 ?4ab是否在自变量取值范围x1?x?x2内,若2a如果自变量的取值范围是x1?x?x2,那么,首先要看?4ac?b2b在此范围内,则当x=?时,y最值?;若不在此范围内,则需要考虑函数在x1?x?x2范围内

2a4a2的增减性,如果在此范围内,y随x的增大而增大,则当x?x2时,y最大?ax2?bx2?c,当x?x1时,

如果在此范围内,y随x的增大而减小,则当x?x1时,当x?x2y最小?ax12?bx1?c;y最大?ax12?bx1?c,

2时,y最小?ax2?bx2?c。

考点四、二次函数的性质 (6~14分) 1、二次函数的性质

函数 二次函数y?ax2?bx?c(a,b,c是常数,a?0)

a>0

y

图像

0 x

(1)抛物线开口向上,并向上无限延伸;

(2)对称轴是x=?a<0

y

0 x

(1)抛物线开口向下,并向下无限延伸;

bbbb,顶点坐标是(?,(2)对称轴是x=?,顶点坐标是(?,2a2a2a2a4ac?b2); 4a性质 (3)在对称轴的左侧,即当x?的增大而减小;在对称轴的右侧,即当x>?b时,y随x的增大而增大,简记左减2ab时,y随x的增大而减小,简记左2a右增;

(4)抛物线有最低点,当x=?增右减;

bb时,y有最小(4)抛物线有最高点,当x=?时,y有最2a2a 第15页

上海中考数学知识点总结新

点P(x,y)在第一象限?x?0,y?0;点P(x,y)在第二象限?x?0,y?0;点P(x,y)在第三象限?x?0,y?0;点P(x,y)在第四象限?x?0,y?0。2、坐标轴上的点的特征点P(x,y)在x轴上?y?0,x为任意实数;点P(x,y)在y轴上?x?0,y为任意实数;点P(x,y)既在x轴上,又在y轴上?x,y同时为零
推荐度:
点击下载文档文档为doc格式
6olhx5781062a898ee5j
领取福利

微信扫码领取福利

微信扫码分享