标准文档
误差函数。为了得到相对于横向滤波器结构来说更好的性能(这些性能是用计算复杂度、收敛速度和有限字长特征等来描述的)自适应IIR滤波器结构:自适应IIR滤波器采用得最多的结构是标准直接形式结构,因为它的实现和分析都很简单。然而,采用递归自适应滤波会存在一些内在的问题(这些问题是由结构决定的,比如要求对极点的稳定性进行监视),而且收敛速度很慢。为了克服这些问题,人们提出了不同的结构形式。
(3)算法 其中算法是为了使某个预先确定的准则达到最小化,而自适应地调整滤波器系数的方法。算法是通过定义搜索方法(或者最小化算法)、目标函数和无偿信号的特性来确定的。算法的选择据定了整个自适应过程的几个重要因素,比如优解的存在性、有偏最优解和计算复杂度等。
[7]
2.3 自适应IIR滤波器
自适应滤波器出现以后,发展很快。由于设计简单、性能最佳,自适应滤波器是目前数字滤波器领域是活跃的分支,也是数字滤波器研究的热点。主要自适应滤波器有:递推最小二乘(RLS)滤波器、最小均方差(LMS)滤波器、格型滤波器、无限冲激响应(IIR)滤波器。其中RLS滤波器具有稳定的自适应行为而且算法简单,收敛性能良好。
实际情况中,由于信号和噪声的统计特性常常未知或无法获知,这就为自适应滤波器提供广阔的应用空间、系统辨识、噪声对消、自适应谱线增强、通信信道的自适应均衡、线性预测、自适应天线阵列等是自适应滤波器的主要应用领域。
自适应有限冲激响应(FIR)滤波器由于其收敛性和稳定性十分简单,现已有相当完善的自适应算法,在信号处理领域,获得了广泛应用。但由于它是非递归结构,冲激响应为有限长,当用于较高精度匹配的实际物理系统时,所需阶次可能相当大,因而导致结构复杂,运算量大。自适应IIR滤波器是一个具有无限冲激响应的递归滤波器,它的一个最重要的优点是,与相同系数个数的自适应FIR滤波器相比有更好的性能,这是因为输出的反馈使有限数量的系数产生了无限冲激响应,使得零点与极点模型滤波器的输出比起仅有零点的滤波器的输出能更有效地逼近期望响应信号。例如,一个有足够高
实用文案
标准文档
阶数的自适应IIR滤波器可以精确地逼近一未知的零点与极点系数阔,而一个自适应FIR滤波器只能近似逼近这一系统。反之,要达到相同性能,IIR滤波器所需要的系数个数一般比FIR滤波器少得多,正是由于这一潜在的计算量的优势,近十年来,自适应IIR滤波器的研究一直非常活跃,出现了一批比较成熟的算法。可以预测,在许多应用中,自适应IIR滤波器将取代正被广泛使用的自适应FIR滤波器。
[8]
应该指出的是,与自适应FIR滤波器相比,自适应IIR滤波器在减少计算量的同时也付出了一定的代价。由于反馈的存在,算法的收敛时间加大,其收敛性和稳定性分析都十分复杂,这是需要注意继续研究的问题。目前,在相同滤波性能条件下,自适应IIR滤波器的收敛性己可优于自适应FIR滤波器。
根据误差的不同表示,自适应IIR滤波器又可分为两种形式:方程误差(Equation-Error)形式和输出误差(Output-Error)形式。
在很大程度上方程误差自适应IIR滤波器在很像一个自适应FIR滤波器,他们之间的主要区别在与方程误差自适应IIR滤波器就是一个零点一极点模型,而自适应FIR滤波器是一个严格全零点模型。而输出误差形式的自适应IIR滤波器的算法比方程误差IIR滤波器的算法要复杂的多。输出误差方法中的滤波器输出仅由观测输入来产生期望响应。
2.4 自适应滤波器的应用
近十几年来,自适应滤波理论和方法得到了迅速的发展,究其原因是因为自适应滤波器相比于其他一般的滤波器在滤波性能、设计实现的难易程度、对外部环境的复杂程度的适应能力和对系统先验统计知识的依赖程度等方面都显现出强大的优势。自适应滤波器具有很强的自学习、自跟踪能力和算法的简单易实现性,它在噪化信号的检测增强,噪声干扰的抵消,通信系统的自适应均衡,图象的自适应增强复原以及未知系统的自适应参数辩识等方面都有广泛的应用。在本节中,我们将讨论输入信号和期望信号的一些可能选择,并讨论这些选择是如何与应用联系在一起的。
实用文案
标准文档
2.4.1 信号增强器
自适应滤波器的一个简单应用就是信号增强器,它被用来检测或增强淹没在宽度噪声中的窄带随机信号。对于信号增强的情况,信号x(k)受噪声
n1(k)的污染,而且与噪声相关的信号n2(k)是可以得到的(即可测量的)。如
果n2(k)作为自适应滤波器的输入,而将受到噪声污染的信号作为期望信号,则当滤波收敛以后,其输出误差就是信号的增强形式。图2-2说明了一种信号增强的典型配置。
[9]
x(k)?n1(k) 自适应 滤波器 + e(k) n2(k) 图2-2 信号增强。其中n1(k)和n2(k)是彼此相关的噪声函数
2.4.2 系统辨识器
在系统辨识应用中,期望信号是未知系统受某个宽带信号激励时产生的输出,在大多数情况下,输入是白噪声信号。宽带信号同时也被用来作为图2-3所示的自适应滤波器的输入。当输出MSE达到最小时,自适应滤波器就代表了未知系统的模型。
2.4.3 信道均衡器
信道均衡器的作用是在信道通带内形成一个信道传输函数的逆,而在通带之外它的增益则很小或者为零。因而,由信道和均衡器级联组成的系统在
通带内有基本均匀的振幅特性,而带外基本为零,相位响应在带内是频率的线性函数。如果条件满足,联合的冲激响应就是辛格函数,故符号间干扰可被消除。自适应调整也解决了信道本身未知、时变的特性所带来的困难。
在信道均衡应用中,将发送的受信道失真影响的原始信号作为自适应滤
实用文案
标准文档
波器的输入信号,而期望信号是原始信号的时延形式,如图2-4所示。通常情况下,输入信号的时延形式在接收端是可以得到的,采用形式是标准的训练信号。当MSE达到最小时,就表明自适应滤波器代表了信道的逆模型(均衡器)。
未知系统 d(k) x(k) 自适应 滤波器 + y(k) e(k)
图2-3 系统辨识器
Z?L d(k) n(k) 自适应 滤波器 信道 + + e(k) x(k) y(k) 图2-4 信道均衡器
2.4.4 信号预测器
最后,对于预测情形,期望信号是自适应滤波器输入信号的前向(有时可能是后向)形式,如图2-5所示。当滤波器收敛以后,自适应滤波器就代表了输入信号的模型,而且可以用来作为输入信号的预测器模型。
实用文案
标准文档
y(k)Z?L自适应 滤波器 + e(k) x(k) 图2-5 信号预测器
第3章 LMS自适应滤波算法分析
3.1 引言
LMS算法是1960年由Widrow和Hoff提出的最小均方误差(LMS)算法,LMS算法是基于估计梯度的最速下降算法的,由于采用粗糙的梯度估计值得到的,从而其算法性能欠佳,应用范围受限,但是因为其具有计算量小、易于实现等优点而在实践中被广泛采用。典型的应用领域有系统识别、信号处理和自适应控制。LMS算法的基本原理是基于最速下降法,即沿着权值的梯度估值的负方向进行搜索,达到权值最优,实现均方误差最小意义下的自适应滤波。初始收敛速度、时变系统跟踪能力及稳态失调是衡量自适应滤波算法优劣的三个重要的技术指标。由于主输入端不可避免地存在干扰噪声,自适应滤波算法将产生参数失调噪声。干扰噪声越大,则引起的失调噪声就越大。减小步长因子产可降低自适应滤波算法的稳态失调,提高算法的收敛精度。
[15]
3.2 最小均方差(LMS)算法
LMS算法的判据是最小均方误差,即理想信号d(n)与滤波器输出y(n)之差e(n)的平方值的期望值最小,并且根据这个判据来修改权系数wi(n)由此产生的算法称为最小均方算法(LMS)。绝大多数对自适应滤波器的研究是基于由Widrow提出的LMS算法。这是因为LMS算法的设计和实现都比较简单,
实用文案