精选
课题 变量与函数(1)
【学习目标】
1.让学生了解变量与函数的相关概念,力求做到理解.
2.让学生理解并掌握函数的三种最常用的表示方法,并会用表达式法表示数量关系. 【学习重点】 变量与函数的概念. 【学习难点】 变量与函数的概念.
行为提示:创设问题情景导入,激发学生的求知欲望.
行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.
知识链接:
1.对于收音机而言,波长与频率的积是一个定值. 利息
2.利率=×100%.
本金
解题思路:将所有相应的x,y的值代入函数关系式,如果等式成立,则成立.
方法指导:一个函数中,至少有两个变量,而且自变量对因变量而言,是一一对应的关系.情景导入 生成
问题
【旧知回顾】
1.在学习与生活中,经常要研究一些数量关系,先看下面的问题:如图是某地一天内的气温变化图,请同学们看图回答:
(1)这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,说出这一时刻的气温; (2)这一天中,最高气温是多少?最低气温是多少?
可编辑
精选
(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 2.学生思考、讨论后,引导学生如何从图象中获取信息,并给出本题答案: (1)这天的6时、10时和14时的气温分别为-1 ℃、2 ℃、5 ℃; (2)这一天中最高气温是5 ℃,最低气温是-4 ℃;
(3)这一天中,3~14时的气温在逐渐升高,0~3时和14~24时的气温在逐渐降低.
自学互研 生成能力
知识模块一 函数的表示方法 【自主探究】
1.图象法:从上图中我们可以看到,随着时间t(h)的变化,相应地气温T(℃)也随之变化.也就是说,我们可以用图来反映气温随时间变化的规律.
2.列表法:下表是某年某月某银行为“整存整取”的存款方式规定的利率:
存期 年利率(%) 量之间的关系.
300 000
3.表达式法:如λf=300 000或f=或S=πr2等,可以用一个等式来反映两个变化着的数量之间
λ的关系.
4.不同的函数之间的表示方法也可以互相变换.
学习笔记:
1.函数的三种表示方法:列表法、图象法、表达式法. 2.当一个自变量对应唯一一个因变量时才是函数.
3.寻找函数表达式时,一般应建立等式,再写成左边只含因变量、右边含变量的形式.
可编辑
三月 六月 一年 两年 三年 五年 1.710 0 1.890 0 1.980 0 2.250 0 2.450 0 2.750 0 随着存期的增长,相应的年利率也随着增长.也就是说,我们还可以用列表的方法来反映两个变化着的精选
行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.
学习笔记:检测的目的在于让学生掌握函数中的变量、常量与表示方法,学会求简单的函数表达式. 【合作探究】
范例1:已知两个量x和y,它们之间的3组对应值如下表所示:
x y -1 -1 0 1 1 3 则y与x之间的函数关系式可能是( B ) A.y=x B.y=2x+1 C.y=x2+x+1
3
D.y=
x
知识模块二 常量、变量与函数的定义 【自主探究】
1.变量:在某一变化过程中,可以取__不同数值的量__,叫做变量.
2.函数:一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都__有唯一的值__与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数.
3.常量:在某一变化过程中,取值__始终保持不变__的量,叫做常量. 【合作探究】
范例2:写出下列各问题中两个变量间的关系式,并指出哪些量是变量,哪些量是常量. (1)橘子每千克的售价是1.5元,则购买数量x(kg)与所付款y(元)之间的关系式; (2)用总长为60 m的篱笆围成矩形场地,则矩形的面积S与一边长x之间的关系式. 解:(1)y=1.5x,x,y是变量,1.5是常量; (2)S=-x2+30x,x,S是变量,-1,30是常量.
范例3:声音在空气中传播的速度y(m/s)(简称音速)与气温x(℃)有一定的关系,下表列出一组不同气温时的音速:
气温x(℃) 音速(m/s) 0 331 5 334 10 337 15 340 20 343 (1)当气温x取0 ℃至20 ℃之间的一个确定的值时,相应的音速y确定吗? (2)音速y可以看成是气温x的函数吗?如果可以,请写出函数表达式. 解:(1)确定;
(2)音速y可以看成是气温x的函数,此时y=0.6x+331.
交流展示 生成新知
1.将阅读教材时“生成的新问题“和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
可编辑
精选
知识模块一 函数的表示方法 知识模块二 常量、变量与函数的定义
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思 查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________
可编辑