实用标准文案
计算机组成原理(答案)
第一章答案
1. 比较数字计算机和模拟计算机的特点。
解:模拟计算机的特点:数值由连续量来表示,运算过程是连续的; 数字计算机的特点:数值由数字量(离散量)来表示,运算按位进行。
两者主要区别见P1 表1.1。
2. 数字计算机如何分类?分类的依据是什么?
解:分类: 数字计算机分为专用计算机和通用计算机。通用计算机又分为巨型机、大型机、中
型机、小型机、微型机和单片机六类。
分类依据:专用和通用是根据计算机的效率、速度、价格、运行的经济性和适应性来划分的。通用机的分类依据主要是体积、简易性、功率损耗、性能指标、数据存储容量、指令系统规模和机器价格
等因素。
3. 数字计算机有那些主要应用?
4. 冯. 诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?
解:冯. 诺依曼型计算机的主要设计思想是:存储程序和程序控制。 存储程序:将解题的程序(指令序列)存放到存储器中;
程序控制:控制器顺序执行存储的程序,按指令功能控制全机协调地完成运算任务。
主要组成部分有:控制器、运算器、存储器、输入设备、输出设备。 5. 什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?
解:存储容量:指存储器可以容纳的二进制信息的数量,通常用单位KB、MB、GB来度量,存储容
量越大,表示计算机所能存储的信息量越多,反映了计算机存储空间的大小。
单元地址:单元地址简称地址,在存储器中每个存储单元都有唯一的地址编号,称为单元地址。
数据字: 若某计算机字是运算操作的对象即代表要处理的数据,则称数据字。
指令字: 若某计算机字代表一条指令或指令的一部分,则称指令字。
6. 什么是指令?什么是程序?
解:指令:计算机所执行的每一个基本的操作。
程序:解算某一问题的一串指令序列称为该问题的计算程序,简称程序。 7. 指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?
解:一般来讲,在取指周期中从存储器读出的信息即指令信息;而在执行周期中从存储器中读出的
精彩文档
实用标准文案 信息即为数据信息。
8. 什么是内存?什么是外存?什么是CPU?什么是适配器?简述其功能。
解:内存:一般由半导体存储器构成,装在底版上,可直接和CPU交换信息的存储器称为内存储器,
简称内存。用来存放经常使用的程序和数据。
外存:为了扩大存储容量,又不使成本有很大的提高,在计算机中还配备了存储容量更大的磁
盘存储器和光盘存储器,称为外存储器,简称外存。外存可存储大量的信息,计算
机需要使用时,再调入内存。
CPU:包括运算器和控制器。基本功能为:指令控制、操作控制、时间控制、数据加工。 适配器:连接主机和外设的部件,起一个转换器的作用,以使主机和外设协调工作。
9. 计算机的系统软件包括哪几类?说明它们的用途。 解:系统软件包括:(1)服务程序:诊断、排错等 (2)语言程序:汇编、编译、解释等
(3)操作系统 (4)数据库管理系统
用途:用来简化程序设计,简化使用方法,提高计算机的使用效率,发挥和扩大计算机的功能
及用途。
10. 说明软件发展的演变过程。
11. 现代计算机系统如何进行多级划分?这种分级观点对计算机设计会产生什么影响? 解:多级划分图见P16图1.6。可分为:微程序设计级、一般机器级、操作系统级、汇编语言级和
高级语言级。
用这种分级的观点来设计计算机,对保证产生一个良好的系统结构是有很大帮助的。 12. 为什么软件能够转化为硬件?硬件能够转化为软件?实现这种转化的媒介是什么? 13. \计算机应用\与\应用计算机\在概念上等价吗?用学科角度和计算机系统的层次结构来寿命你
的观点。
第二章答案
1. 写出下列各数的原码、反码、补码、移码表示(用8位二进制数)。其中MSB是最高位(又是符号位)LSB是最低位。如果是小数,小数点在MSB之后;如果是整数,小数点在LSB之后。
(1) -35/64 (2) 23/128 (3) -127 (4) 用小数表示-1 (5) 用整数表示-1
解:(1)先把十进制数-35/64写成二进制小数:
(-35/64)10=(-100011/1000000)2=(-100011×2-110)2=(-0.100011)2
令x=-0.100011B
精彩文档
实用标准文案
∴ [x]原=1.1000110 (注意位数为8位) [x]反=1.0111001 [x]补=1.0111010 [x]移=0.0111010
(2) 先把十进制数23/128写成二进制小数:
(23/128)10=(10111/10000000)2=(10111×2-111)2=(0.0001011)2
令x=0.0001011B
∴ [x]原=0.0001011 [x]反=0.0001011 [x]补=0.0001011 [x]移=1.0001011
(3) 先把十进制数-127写成二进制小数:
(-127)10=(-1111111)2 令x= -1111111B
∴ [x]原=1.1111111 [x]反=1.0000000 [x]补=1.0000001 [x]移=1.0000001
(4) 令x=-1.000000B ∴ 原码、反码无法表示
[x]补=1.0000000 [x]移=0.0000000
(5) 令Y=-1=-0000001B
∴ [Y]原=10000001 [Y]反=11111110 [Y]补=11111111 [Y]移=01111111
2. 设[X]补= a0,a1,a2…a6 , 其中ai取0或1,若要x>-0.5,求a0,a1,a2,…,a6 的取值。
解:a0= 1,a1= 0, a2,…,a6=1…1。
3. 有一个字长为32位的浮点数,阶码10位(包括1位阶符),用移码表示;尾数22位(包括1
位尾符)用补码表示,基数R=2。请写出:
(1) 最大数的二进制表示; (2) 最小数的二进制表示; (3) 规格化数所能表示的数的范围; (4) 最接近于零的正规格化数与负规格化数。 解:(1)1111111111 0111111111111111111111 (2)1111111111 1000000000000000000000
(3)1111111111 0111111111111111111111~0111111111 1000000000000000000000 (4)0000000000 0000000000000000000001~0000000000 1111111111111111111111
精彩文档
实用标准文案
4. 将下列十进制数表示成浮点规格化数,阶码3位,用补码表示;尾数9位,用补码表示。
精彩文档
(1) 27/64 (2) -27/64
解:(1)27/64=11011B×=0.011011B=0.11011B×
浮点规格化数 : 1111 0110110000 (2) -27/64= -11011B×= -0.011011B= -0.11011B×
浮点规格化数 : 1111 1001010000
5. 已知X和Y, 用变形补码计算X+Y, 同时指出运算结果是否溢出。
(1)X=0.11011 Y=0.00011 (2)X= 0.11011 Y= -0.10101 (3)X=-0.10110 Y=-0.00001
解:(1)先写出x和y的变形补码再计算它们的和 [x]补=00.11011 [y]补=00.00011
[x+y]补=[x]补+[y]补=00.11011+00.00011=0.11110
∴ x+y=0.1111B 无溢出。 (2)先写出x和y的变形补码再计算它们的和 [x]补=00.11011 [y]补=11.01011
[x+y]补=[x]补+[y]补=00.11011+11.01011=00.00110
∴ x+y=0.0011B 无溢出。 (3)先写出x和y的变形补码再计算它们的和 [x]补=11.01010 [y]补=11.11111
[x+y]补=[x]补+[y]补=11.01010+11.11111=11.01001
∴ x+y= -0.10111B 无溢出
6. 已知X和Y, 用变形补码计算X-Y, 同时指出运算结果是否溢出。
(1) X=0.11011 Y= -0.11111 (2) X=0.10111 Y=0.11011 (3) X=0.11011 Y=-0.10011
解:(1)先写出x和y的变形补码,再计算它们的差 [x]补=00.11011 [y]补=11.00001 [-y]补=00.11111 [x-y]补=[x]补+[-y]补=00.11011+00.11111=01.11010
实用标准文案
∵运算结果双符号不相等 ∴ 为正溢出
X-Y=+1.1101B
(2)先写出x和y的变形补码,再计算它们的差
[x]补=00.10111 [y]补=00.11011 [-y]补=11.00101
精彩文档
[x-y]补=00.10111+11.00101=11.11100
∴ x-y= -0.001B 无溢出 (3)先写出x和y的变形补码,再计算它们的差
[x]补=00.11011 [y]补=11.01101 [-y]补=00.10011 [x-y]补=[x]补+[-y]补=00.11011+00.10011=01.01110
∵运算结果双符号不相等 ∴ 为正溢出
X-Y=+1.0111B
7. 用原码阵列乘法器、补码阵列乘法器分别计算X×Y。
(1)X=0.11011 Y= -0.11111 (2)X=-0.11111 Y=-0.11011 解:(1)用原码阵列乘法器计算: [x]补=0.11011 [y]补=1.00001 (0) 1 1 0 1 1 ×) (1) 0 0 0 0 1 ---------------------------------- (0) 1 1 0 1 1 (0) 0 0 0 0 0 (0) 0 0 0 0 0 (0) 0 0 0 0 0 (0) 0 0 0 0 0
(0) (1) (1) (0) (1) (1)
----------------------------------------- (1) 0 0 1 0 1 1 1 0 1 1
[x×y]补=1.0010111011 ∴ x×y= -0.1101000101
实用标准文案
8. 用原码阵列除法器计算 X÷Y。 (1)X=0.11000 Y= -0.11111 (2)X=-0.01011 Y=0.11001
解:(1)[x]原=[x]补=0.11000 [-∣y∣]补=1.00001
被除数 X 0.11000 精彩文档
+[-∣y∣]补 1.00001 ---------------------- 余数为负 1.11001 →q0=0
左移 1.10010 +[|y|]补 0.11111 ---------------------- 余数为正 0.10001 →q1=1
左移 1.00010 +[-|y|]补 1.00001 ---------------------- 余数为正 0.00011 →q2=1
左移 0.00110 +[-|y|]补 1.00001 ---------------------- 余数为负 1.00111 →q3=0
左移 0.01110 +[|y|]补 0.11111 ---------------------- 余数为负 1.01101 →q4=0
左移 0.11010 +[|y|]补 0.11111 ---------------------- 余数为负 1.11001 →q5=0
+[|y|]补 0.11111