2020年全国硕士研究生招生考试(数学一)参考答案及解析
1.D解析:A选项可知(
B选项(C选项(
?
x0(et?1)dt)'?ex?1~x2;333222?
x
0
ln(1?t)dt)'?ln(1?x)~x;?
sinx0sint2dt)'?sinx2cosx~x2;sin3tdt)'?sinxsin3(1?cosx)~14x.2D选项(2.C?1-cosx0f(x)=0,且解析:当f(x)在x?0处可导时,有f(x)在x=0处连续,f(0)=limx?0lim
x?0
f(x)?f?0?xf(x)x=lim
x0=lim
x?0
f(x)
存在设为a,则有,x
limx0f(x)xf(x)x×=lim×lim=a×0=0.
x0x0xxxx3.A函数f(x,y)在点(0,0)处可微,,则有f(x,y)-f(0,0)-(x,y)?(0,0)lim
ff
x-x(0,0)yy
(0,0)x2+y2ffx-x(0,0)yx+yx?y22f(x,y)-=
y
(0,0)lim()()x,y?0,022=0
即有(x,y)?(0,0)4.A5.Blim
|n(x,y,f(x,y))|=0解析:矩阵A经初等列变换化成B,根据左行右列,应该选B.6.C解析:由于两直线相交,故两直线的方向向量无关,即?1,?2无关,由因为两直线上有两a1a2b2c2a2?a3b2?b3?0,故选C.c2?c3点组成的向量与两直线的方向向量共面,故b1c17.DP(ABC)?P(ABC)?P(ABC)
?p(AB)?p(ABC)?p(AB)?p(ABC)?p(BC)?p(ABC)?p(A)?p(AB)?[p(AC)?p(ABC)]?p(B)?p(AB)?[p(BC)?p(ABC)]?p(C)?p(BC)?[p(AC)?p(ABC)]11111?1?1
?0???0???0??0???41241212?12?45?12?
8.B1
E?Xi??EXi?100??50
2i?1i?110010011
D?Xi??DXi?100???25
22i?1i?1100100?100??100?
X?50x?50??????55?50??i?1i?i?1i?P??P1??????????1?555????????????
9.-1limln(1?x)?(e?1)x2xx??x?0121x?(x?x2)22??12x10.?2dy1d2yd2yt2?1解析:?,2???2??2dxtdxt?1dxt311.am?n解析:12.4e?
??0f(x)dx??[?af?(x)?f??(x)]dx?am?n.0xy2??f(x,y)=òextdt;
0fy(x,y)=exxyx,fy(x,1)=exx;fyx(x,1)=e3xx+e;
2x3x3223解析:fyx(1,1)=4e.
a
13.0a1?1
?11a0
1?10a=
a00
aa0
01a
0?1aa
0?11
a=a?01?1aaa00a0a0a
a?(?1)4?1a1?11?10
?100=a?0
1?1+a2a
aa
a00a
?(?1)4?1a1?1
?10=?4a2?a4.14.2
?Cov(X,sinX) ?EXsinX?EXEsinX?1?f(x)????0?EXsinX?
?11?x???,??22?其他1
??
?2??2xsinxdx?
2
??
?20
???22?
xsinxdx???xcosx02??2cosxdx?=
0????EX?EsinX?0
Cov(X,sinX) ?EXsinX?EXEsinX?
2
??fx'?3x2?y?0?
15.解:对函数关于x,y分别求导,令并两偏导数同时为零,得?',解得2
??fx?24y?x?01?
x?
?x?0??6''''''
.又fxx?6x,fxy??1,fyy?48y,在?0,0?处,AC?B2??1?0,从或??
?y?0?y?1
?12?
而函数在此处不取极值;在?
?11?
,?处,AC?B2?3?0,A?1?0,从而函数在此处取极?612?
1?11?
f?,???.216?612?
?Q?4x2?8xy?y2?P??222?x?y?4x?y?小值,且f?
1?11?
,???.综上函数的极值为216?612?
P?16.解:由条件知4x?yx?y,Q?4x2?y24x2?y2,可得.令l:4x2?y2??2,其中?为充分小的正数,取顺时针方向.则I=?
L?l??
l??Q?P?1??????dxdy?2??x?y?D?
n+
?l?4x?y?dx??x?y?dy?
1
?2??2dxdy??D'1