终止反应由释放因子RF识别进入核糖体A位的终止密码UAA、UAG、UGA开始,大亚基上肽酰转移酶变构,表现水解酶的活性,使P位上tRNA所携带的多肽链与tRNA之间的酯键水解。RR因子使tRNA从P位脱落,70S核糖体随即也从mRNA上脱落,解离为30S和50S亚基,投入下一轮核糖体循环,合成另一新的蛋白质分子。
通常,多个核糖体同时翻译一个mRNA分子,形成多核糖体(polysome),加快蛋白质合成的速度,亦使mRNA得到充分利用。 蛋白质合成消耗的大量能量用于保证mRNA的遗传信息翻译成蛋白质氨基酸序列的准确性。每一aa-tRNA形成需要 1分子ATP(2个高能键)。延长一个氨基酸消耗2分子GTP。因此每形成1个肽键消耗能量7.3×4=29.2kcal/mol(122kj/mol)。
三、翻译后加工
很多蛋白质在肽链合成后要经过一定的加工或修饰,才转变为有生物学活性的蛋白质。举例说明: 1.一级结构的修饰 ①去除N-fMet
细菌蛋白质的合成以fMet-tRNA作为第一个进位的起始物,所以N端是fMet,脱甲酰基酶水解除去N端的甲酰基,然后氨基肽酶再切除一个或多个N端氨基酸。
②靶向运输
新合成的多肽的输送是有目的、定向地进行的,通过信号肽引导到目的地。通常在被转运多肽链的N端,一段10~40个氨基酸残基组成的序列,含高度疏水性的氨基酸,最后信号肽被信号肽酶切除。如胰岛素原是由84个氨基酸组成的一条无活性的肽链,其前面的23个氨基酸残基的信号肽在转运至高尔基体的过程中被切除。最后形成由A链、B链,3个二硫键组成的有活性的胰岛素。许多蛋白激素是以前体蛋白形式合成,经加工后,再分泌出细胞。
③个别氨基酸的修饰
胶原中羟脯氨酸和羟赖氨酸是脯氨酸和赖氨酸经羟化反应形成;许多酶的活性中心的磷酸丝氨酸也是丝氨酸羟基磷酸化而成。 2. 高级结构的修饰
蛋白质的一级结构决定其高级结构,这一原则只给出蛋白质折叠的热力学上的可能性。多肽链准确折叠和组装过程需要某些辅助蛋白质——分子伴侣(chaperon)的参与,通过提供一个保护环境加速蛋白质折叠成天然构象或形成四级结构。分子伴侣广泛存在从细菌到人的生物体中,其中有很大一部分被称之为热休克蛋白。
3. 活性肽合成
人体内活性肽多数是从非活性的蛋白质前体经特殊的酶系加工而成。包括多肽链裂解、酰化、乙酰化、糖基化和硫酯化等。 四、真核生物与原核生物蛋白质合成的差异
1. 起始因子种类多。已知有9种,称为eIFs。起始氨基酸是Met,起始tRNA称Met-tRNA1。有帽子结合蛋白。 2. 起始复合物形成的次序有差异。
有43S起始复合物形成,48S起始复合物形成和80S起始复合物形成三步。小亚基40S核糖体结合到mRNA的帽子上,沿着mRNA运动,直到遇到第一个AUG密码子,才开始翻译(没有富含嘌呤的序列确定起始位点)。
3. 肽链延长和终止
目前所知,除因子的种类和名称与原核生物蛋白质合成不同外,其过程非常相似。延长因子是eEF1α和eEF1βγ。终止由单一的释放因子eRF催化。
第十二章 物质代谢的相互联系与调控
教学目标:
1.熟悉物质代谢的特点和相互间的联系,掌握交叉点。 2.了解代谢调节的方式和水平。
3.熟悉酶水平调节的方式、原理(酶活性、酶量、酶的区域化分布)。 4.了解激素和神经水平调节的特点。
导入:动物在生命活动过程中,除摄入氧气排出二氧化碳外,还要不断地摄取食物排出代谢废物。机体这种和环境间不断进行的物质交换,即物质代谢。物质代谢是生命本质特征,是生命活动的物质基础。其特点是什么?
第一节 物质代谢的相互联系
一、物质代谢的特点 1.整体性
各类物质的代谢在相互联系、相互制约下进行,形成一个完整统一的过程(网络)。如在能量供应上,糖、脂、蛋白质可以相互替代,
相互制约。一般情况下,糖是主要供能物质(50%~70%),脂主要是储能(供能只占10%~40% ),蛋白质几乎不是供能形式;饥饿或某些病理状态时,糖供能减少,脂和蛋白质分解供能增加。
物质代谢在个体和种属之间都具互补性,这是生态平衡的基础。 2.代谢调节
正常情况下,机体各种物质代谢能适应内外环境变化,有序地进行。这是由于机体存在精细的调节机制,不断调节各种物质代谢的强度、方向和速度以适应内外环境变化。代谢调节普遍存在于生物界,是生物的重要特征。
3.生命物质的降解和合成有共同点
生命物质的降解是一个分子由大到小,生成其单体的过程。降解的方式有水解、磷酸解、焦磷酸解、硫解。降解后的单体进入中间代谢进一步分解。分解的作用一是获得能量,二是获得重要的中间物。ATP是生物体能量利用的共同形式,是机体最主要的能量载体和各种生命活动能量的直接供体。分解的最终产物是CO2、H2O、NH3、H3PO4、SO2等无机物,因种属差异,各类物质分解的最终产物有所不同。
生命物质的合成是一个由小到大,由简单到复杂的过程。分为半合成和从头合成。蛋白质、核酸、多糖和脂类的聚合是一种半合成。自养生物可直接将无机物转化为有机物,氨基酸、核苷酸、单糖、脂肪酸和胆固醇的合成是从无到有,即从头合成。NADPH是合成代谢所需的还原当量。
物质代谢具共同的代谢池,处于动态平衡中。 4.各组织、器官物质代谢各具特色
动物、植物和微生物的物质代谢以及动物各组织、器官的物质代谢途径有所不同,各具特色。肝脏是物质代谢的中心。
每种物质代谢的活化方式不同(如糖的降解是磷酸化己糖,而糖的聚合是UDPG、ADPG;甘油三酯的合成是甘油-α-磷酸和脂酰辅酶A;氨基酸的活化以氨酰腺苷酸方式进行)。
二、物质代谢的相互联系
物质代谢通过各代谢途径的共同中间产物相互联系,但在相互转变的程度上差异很大,有些代谢反应是不可逆的。乙酰CoA是糖、脂、氨基酸代谢共有的重要中间代谢物,三羧酸循环是三大营养物最终代谢途径,是转化的枢纽。
1. 糖代谢与脂肪代谢的关系
糖可以转变成脂肪、磷脂和胆固醇。二羟丙酮磷酸经甘油磷酸脱氢酶催化变成甘油-α-磷酸;丙酮酸氧化脱羧变成乙酰辅酶A,再合成双数碳原子的脂肪酸。
在动物和人,脂肪转变成糖惟量很少。甘油可经糖异生变成糖原,但脂肪酸代谢的乙酰辅酶A不能转变成丙酮酸,不能异生成糖。虽然甘油、丙酮和丙酰CoA可以转变成糖,其量微不足道。
植物体内有乙醛酸循环途径,所以,脂肪转变成糖惟量大。 2. 糖代谢与蛋白质代谢的关系
糖不能转变成蛋白质,而蛋白质可转变成糖。糖代谢产生的α-酮酸(丙酮酸、α-酮戊二酸、草酰乙酸)氨基化和转氨生成相应的非必需氨基酸。蛋白质分解的20种氨基酸(亮氨酸、赖氨酸除外),均可生成α-酮酸转变为糖。
3. 脂肪代谢和蛋白质代谢的关系
脂不能转变为蛋白质,而蛋白质可转变为脂类。因为脂肪酸转变成氨基酸仅限于谷氨酸,且需草酰乙酸存在(来源糖)。 氨基酸代谢可生成乙酰CoA及合成磷脂的原料。 4. 核酸和其他物质代谢的关系
核酸和其他物质代谢的关系密切。核酸通过控制蛋白质的合成影响细胞的组成成分和代谢类型,核酸代谢离不开酶及调节蛋白。 许多核苷酸在物质代谢中起重要作用,UTP参与糖的合成,CTP参与磷脂的合成,CTP为蛋白质合成所必需。许多辅酶为核苷酸衍生物。氨基酸及其代谢产生的一碳单位,糖代谢磷酸戊糖途径产生的磷酸核糖是合成核苷酸的原料。
第二节 物质代谢的调节
一、代谢调节的方式和水平 1. 细胞水平的调节
通过改变关键酶的结构或含量以影响酶的活性,进而对代谢进行调节。是生物最基本的调节方式。关键酶催化的反应特点:在整条代谢通路中催化的反应速度最慢,又称限速酶;催化单向反应或非平衡反应;受多种效应物的调节。
2. 激素水平的调节
是通过与靶细胞受体特异结合,将激素信号转化为细胞内一系列化学反应,最终表现出激素的生物效应。 3. 神经水平的调节
是神经系统通过激素、酶或直接对组织、器官施加影响,进行整体调节。 二、细胞水平的调节 (一)酶活性的调节
通过改变酶结构快速调节酶活性,有2种调节方式。 1. 变构调节
变构剂与酶的调节亚基或调节部位非共价结合,引起酶分子构象改变,从而改变酶活性。受调节的酶称为变构酶或别构酶。变构剂有底物、产物、代谢途径终产物及小分子核苷酸类物质。变构效应有变构激活和变构抑制。变构调节主要以反馈方式控制酶的活性,反馈抑制(负反馈)普遍存在。
2. 共价修饰调节
酶分子的某些基团在另一种酶催化下发生化学共价修饰(如磷酸化/脱磷酸,乙酰化/脱乙酰,甲基化/脱甲基等),使酶的构象改变,从而改变酶活性。具有放大效应。
以上两种调节相辅相成。对某一具体的酶而言,可同时受到它们的调节。 (二)酶量的调节
通过改变酶的合成或降解以调节细胞内酶的含量,从而调节代谢的速度和强度。属迟缓调节。酶合成是受基因表达调节的,可在转录和翻译水平进行。
1. 原核生物基因表达的调节
1960~1961年Jacob和Monod对大肠杆菌乳糖发酵过程酶的诱导合成及各种突变型研究后,提出了操纵子模型。操纵子是原核生物基因表达的协调单位,一般含2~6个基因。操纵子模型的核心是对原核生物基因的划分,以后为基因结构分析证实并丰富该模型,还发现色氨酸操纵子、半乳糖操纵子等。转录的起始是基因表达的基本控制点。
(1)酶合成的诱导作用
乳糖操纵子(Lactose operon)由一组功能相关的结构基因(z、y、a),操纵基因(o),启动基因(p),调节基因(i)组成。三个结构基因“开放”可转录同一条mRNA,再翻译出3种利用乳糖的酶(β-半乳糖苷酶、β-半乳糖苷透性酶、β-半乳糖苷 转乙酰酶)。
乳糖操纵子“开”与“关”是在独立的正、负调节因子作用下完成的。阻遏蛋白是负调节因子,cAMP-CAP是正调节因子。CAP是代谢产物活化蛋白,也称cAMP受体蛋白(CRP)。cAMP-CAP结合在启动基因上可促进转录。
葡萄糖的降解物能抑制cAMP酶的活性,并活化磷酸二酯酶,使cAMP的浓度下降,CAP不能活化形成复合物,导致一些酶基因不能转录。大肠杆菌培养基有葡萄糖时,先利用葡萄糖,乳糖是诱导物。
(2)酶合成的阻遏作用
色氨酸操纵子是阻遏操纵子,可说明某些代谢产物阻止细胞内酶的合成。
trpE、D、C、B、A是结构基因。是开放的,转录并翻译合成trp的5种酶。PO是启动基因和操纵基因;L是前导序,a是衰减子。调节基因(trpR)表达的产物阻遏蛋白原无活性,培养基有trp或trp合成过量,可作为辅阻遏物与阻遏蛋白原结合,使其有活性,结合O,阻止P的启动,结构基因关闭。
阻遏作用只控制转录的起始,是粗调节;衰减子形成的衰减调节可控制转录的进行,使细调节。 2. 真核生物基因表达的调节
真核生物基因表达的调节比原核生物复杂。是多层次,受多种因子协同调控的,以正性调节占主导。在转录激活上主要表现在顺式作用元件和反式作用因子的相互作用。
顺式作用元件指影响自身基因表达活性的DNA序列,有启动子、增强子、沉默子等。增强子是增强基因转录活性的调控序列,远离转录起始点,决定基因的时间、空间特异性表达。沉默子是某些基因含有的负调节元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。
反式作用因子是与顺式元件结合实现转录调节的蛋白质,有基本转录因子和特异转录因子,一般都有多个结构域。 (三)酶的区域化
同一个细胞内催化各种代谢的酶有2千多种,催化各种代谢途径的酶往往组成各种多酶体系,存在胞液和一定的亚细胞结构区域,酶在细胞内有一定的分布和定位现象称酶的区域化。
真核细胞主要代谢酶系的区域化分布:糖酵解、戊糖磷酸途径、糖原合成、脂肪酸合成在胞液;三羧酸循环、氧化磷酸化、呼吸链、脂肪酸β氧化、酮体生成在线粒体;核酸合成在细胞核;蛋白质合成、磷脂合成在内质网;糖异生、尿素合成在胞液和线粒体;胆固醇合成、类固醇激素合成在胞液和内质网;多种水解酶在溶酶体;ATP酶、腺苷酸环化酶在细胞质膜。
三、激素对代谢的调节
激素是多细胞生物特殊细胞或腺体产生,经体液输送到特定部位引起特定生物学效应的一些微量化学物质。
激素是靶细胞外的信号分子,对代谢的调节是通过细胞信息传递,需受体介导的,和受体的作用有专一性、可逆性、放大性。 受体是与激素、递质或其它化学物质专一性结合并相互作用,最终触发细胞生物学效应的生物大分子,多数是蛋白质。 1. 膜受体激素
此类激素是蛋白质肽类激素及氨基酸衍生类激素,多为水溶性。
激素(第一信使)与膜受体结合,激活膜上腺苷酸环化酶,使ATP转为cAMP(第二信使),再激活蛋白激酶,进而发挥对靶细胞的调节作用。
2. 胞内受体激素
为类固醇激素,多为脂溶性。激素到达靶细胞,与胞内一种特殊的受体蛋白结合,形成复合物,在一定条件下进入细胞核,作为转录因子,调控相应基因的表达,产生代谢效应。
四、神经系统对代谢的调节
神经系统对代谢的调节是整体调节,以保持内环境的相对稳定。
短期饥饿,胰岛素分泌减少,胰高血糖素分泌增多,引起体内肌肉蛋白质分解,糖异生增强,脂肪分解及酮体生成增多。而长期饥饿,则蛋白质降解减少,脂肪分解及酮体生成进一步增多,肾的糖异生增强。
应激时,肾上腺髓质与皮质分泌增多,胰岛素分泌减少,引起脂肪动员增强,蛋白质分解加强,血糖升高。