乙酰CoA是起始原料,需ATP供能和NADPH供氢。合成酶系存在于胞液和内质网。 二、合成的基本过程
合成过程复杂,有近30步酶促反应,大致分为三个阶段: 乙酰基(C2)→异戊二烯(C5)→鲨烯(C30)→胆固醇(C27) 1.乙酰CoA合成异戊烯焦磷酸(IPP)
2分子乙酰CoA经硫解酶催化缩合成乙酰乙酰CoA,由HMG- CoA合成酶催化结合1分子乙酰CoA,生成β-羟基-β-甲基戊二酸单酰CoA(HMG- CoA), HMG- CoA还原酶(限速酶)催化其生成甲羟戊酸(MVA),消耗2分子NADPH。甲羟戊酸经磷酸化、脱羧三步酶促反应生成活泼的异戊烯焦磷酸(IPP)。
2.鲨烯的合成
一种异构酶催化异戊烯焦磷酸转换成二甲烯丙基焦磷酸(DPP)。然后它按照头对尾方式与另一分子异戊烯焦磷酸缩合成10C牛龙 牛儿焦磷酸。再按头对尾方式与另一分子异戊烯焦磷酸缩合成15C焦磷酸法尼酯(FPP),2分子FPP由鲨烯合成酶催化,仍然按头对尾方式缩合成30C的鲨烯。
3.鲨烯转换为胆固醇
鲨烯转换为胆固醇的过程很复杂,一个中间产物是羊毛固醇,涉及加氧、环化,形成由四个环组成的胆固醇核的反应。而由羊毛固醇到胆固醇还要经过甲基的转移、氧化、脱羧等约20步反应。
三、胆固醇合成的调节和转变
调节胆固醇合成的关键酶是HMG- CoA还原酶。该酶受胆固醇的抑制,同时酶的磷酸化也可调节酶的活性。对于严重的高胆固醇血症,常使用HMG- CoA还原酶的抑制剂,如洛伐他汀。
胆固醇的母核是环戊烷多氢菲,在体内不能被降解,但可以转变成许多具有重要生理功能的固醇类物质。
1.胆汁酸:3/4的胆固醇可在肝脏转变为胆汁酸,随胆汁入肠道,参与脂类的消化吸收。这是胆固醇代谢的主要去路。
2.类固醇激素:胆固醇在肾上腺皮质球状带可转变为肾上腺皮质激素,调节糖、脂、蛋白质代谢;在肾上腺皮质网状带可转变雄激素及少量的雌激素;在睾丸和卵巢组织可经睾酮再转变成二氢睾酮或雌二醇后发挥生理作用。
3.VD3:胆固醇在肠粘膜细胞内可转变为7-脱氢胆固醇(VD3原),经血液运输到皮肤,在紫外线照射下转变成VD3,继而在肝、肾进行两次羟化生成1,25-( O H )2 -D3,调节钙磷代谢。
4.胆固醇酯:在肝、肾上腺皮质和小肠等组织中,胆固醇与脂酰CoA在脂酰CoA胆固醇酰基转移酶(ACAT)作用下,生成胆固醇酯。(胆固醇酯酶可将其水解为胆固醇。)
在血浆中,胆固醇在卵磷脂胆固醇酰基转移酶(LCAT)作用下,接受卵磷脂分子中的脂酰基生成胆固醇酯。 小部分胆固醇可经肠道细菌作用后经肠道排出。
第七章 氨基酸代谢
教学目标:
1.熟悉蛋白质的酶促降解过程。
2.掌握氨基酸分解代谢的一般规律(脱氨基和脱羧基作用,氨基酸分解产物氨和α- 酮酸的去路,尿素的合成)。 3.掌握氨基酸合成途径的类型、必需氨基酸和一碳单位概念;了解某些重要生物活性物质的合成。
导入:蛋白质是生命的物质基础,也是能源物质。蛋白质在体内首先分解为氨基酸而后再进一步代谢,所以氨基酸代谢是蛋白质分解代谢的中心内容。本章重点讲述氨基酸分解代谢。蛋白质的合成另立一章。
第一节 蛋白质的酶促降解
一、蛋白质的营养价值
蛋白质是重要的营养素,人和动物摄食蛋白质用以维持细胞、组织的生长、更新和修补;产生酶、激素、抗体和神经递质等多种重要的生理活性物质,这是糖和脂类不可替代的。每克蛋白质在体内氧气分解产生4千卡能量。
植物和大多数细菌能够合成全部20种基本氨基酸。然而哺乳类不能全部合成。对于成人来说,缬氨酸、亮氨酸、异亮氨酸、苏氨酸、甲硫氨酸、赖氨酸、苯丙氨酸和色氨酸必须由食物供应,称为营养必需氨基酸,对婴幼儿,组氨酸和精氨酸不能满足营养需要量。可由生物机体合成的氨基酸称为非必需氨基酸。
蛋白质的营养价值取决于所含氨基酸的种类、数量及其比例,如果某种食物蛋白中必需氨基酸的种类和比例与人体组织蛋白接近,其
营养价值就高。营养价值较低的蛋白质混合食用,可使必需氨基酸相互补充提高其营养价值,这称为蛋白质的互补作用。
蛋白质的生理需要量根据氮平衡实验,我国营养学会推荐成人每日需要量为80克。 二、蛋白质的酶促降解
蛋白质大分子难以通透生物膜吸收,有时有些抗原、毒素可少量通过粘膜细胞吞饮进入体内而引起过敏、毒性反应。食物蛋白必需经过消化,水解成氨基酸才被机体利用。消化自胃中开始,主要在小肠进行。
蛋白水解酶又称肽酶,包括内肽酶、外肽酶、寡肽酶和二肽酶。内肽酶有胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶和弹性蛋白酶,对肽链内肽键的特异性不同。胃蛋白酶对底物特异性较低,主要水解Phe、Try C端的肽键;胰蛋白酶水解Lys、Arg C端;胰凝乳蛋白酶作用Phe、Try C端;弹性蛋白酶作用脂肪族氨基酸C端。羧肽酶、氨肽酶是外肽酶,羧肽酶B要求肽的C末端氨基酸残基必须是Arg、Lys;羧肽酶A则水解除Arg、Lys,Pro或羟脯氨酸外的C末端氨基酸残基。
胃粘膜主细胞分泌胃蛋白酶原(pepsinogen),经胃酸激活生成胃蛋白酶。胃蛋白酶有自身激活作用。胰酶的前体也是无活性的酶原,进入十二指肠后,胰蛋白酶原迅速被肠激酶激活;胰蛋白酶自身激活作用不强,加上胰液中存在的胰蛋白酶抑制剂,可保护胰脏免遭自身消化,但胰蛋白酶能迅速激活胰液中其他几种酶原。
组织蛋白酶不同于消化道中的蛋白酶。动物死后,组织自溶和尸体腐烂与它有关。植物的种子、幼苗、叶和果实都含有蛋白酶,种子萌发时,蛋白酶的活力最强。某些微生物在适当的条件下能产生大量的细胞外蛋白酶,利用工业发酵可生产蛋白酶。
氨基酸的吸收主要在小肠,是一个耗能的主动吸收过程。外源性氨基酸和内源性氨基酸混合,共同组成氨基酸代谢库,其去路大部分用以合成组织蛋白质。
第二节 氨基酸的一般代谢
氨基酸的一般代谢是指各种氨基酸共同的分解代谢途径。开始于脱氨作用;氨与天冬氨酸的N原子结合,形成尿素并被排放;氨基酸的碳骨架(脱氨基产生的α-酮酸)转化为一般的代谢中间物。
一、脱氨基作用
氨基酸脱氨有氧化脱氨和非氧化脱氨两种方式,氧化脱氨又和转氨作用组成联合脱氨基作用。非氧化脱氨主要在微生物体内进行。 1.氧化脱氨基作用
氧化脱氨是酶催化下伴随有脱氢的脱氨,α-氨基酸转变为α-酮酸。主要的酶有L-氨基酸氧化酶、D-氨基酸氧化酶和L-谷氨酸脱氢酶。前二类是黄素蛋白酶,辅基为FMN和或FAD,在动物体内作用都不大,所形成的FMNH2或FADH2被氧分子氧化,产生毒性的过氧化氢,可由过氧化氢酶分解为水和氧。
L-谷氨酸脱氢酶广泛分布于动物、植物和微生物,辅酶为NAD+或NADP+。L-谷氨酸脱氢酶活性高,专一性强,只催化L-谷氨酸氧化脱氨生成α-酮戊二酸、NH3、NADH或NADPH,反应是可逆的。此酶是一种变构酶,ATP、GTP和NADH是变构抑制剂,而ADP、GDP是变构激活剂。
味精生产即利用微生物体内的L-谷氨酸脱氢酶将α-酮戊二酸转变为谷氨酸,进而转化为谷氨酸钠。 2.转氨基作用
一种α-氨基酸的氨基在转氨酶催化下转移到α-酮酸上,生成相应的α-酮酸和另一α-氨基酸,反应是可逆的。
转氨作用沟通了糖与蛋白质的代谢。大多数转氨酶以α-酮戊二酸作为氨基的受体,这样许多氨基酸的氨基通过转氨作用转化为谷氨酸,再经L-谷氨酸脱氢酶的催化使氨基酸氧化分解。所以谷氨酸在很多氨基酸合成和降解代谢反应中是一个关键的中间代谢物。
已发现50种以上转氨酶。谷丙转氨酶(GPT)在肝脏中活性最高,谷草转氨酶(GOT)在心脏中活性最高,都是细胞内酶。肝细胞受损,血清GPT明显升高。
而心肌梗死患者GOT显著上升。
转氨酶的辅酶只有一种,即磷酸吡哆醛,是VB6的磷酸酯。在转氨过程中,磷酸吡哆醛及磷酸吡哆胺之间相互转变,起着传递氨基的作用,类似于打乒乓球,所以称为乒-乓反应机制。
3.联合脱氨基作用
两种或两种以上的酶联合催化氨基酸的α-氨基脱下,并产生游离氨的过程,称为联合脱氨基作用。动物体内大部分氨基酸是通过这种方式脱氨的,常见的有两种途径:
(1)转氨酶与L-谷氨酸脱氢酶的联合
主要在肝、肾等组织,转氨酶与L-谷氨酸脱氢酶的联合作用,可使大部分氨基酸脱去氨基,全过程是可逆的,其逆过程可以合成新的氨基酸。在这一过程中,α-酮戊二酸是一种氨基传递体,可由三羧酸循环中大量产生。
(2)连续转氨偶联嘌呤核苷酸循环
主要在心肌、骨骼肌和脑进行。活动的肌肉会生氨是因为肌肉内L-谷氨酸脱氢酶活性不高,氨基酸通过连续脱氨,将氨基转移给草酰乙酸,生成天冬氨酸,再与次黄嘌呤核苷酸(IMP)生成AMP。AMP在腺苷酸脱氢酶催化下,生成IMP并释放氨,完成联合脱氨基作用。IMP既是接受天冬氨酸的起始物,又是释放氨基后的再生物,于是构成了嘌呤核苷酸循环。
二、氨的去路
1.氨对动物是有毒的
氨在pH7.4时主要以NH4+的形式存在,在兔体内,血氨达到5mg/100mL,兔即死亡,正常人血氨浓度小于60μmol/L,血氨升高会引起脑功能紊乱,出现中毒症状,是肝昏迷发病的重要机制之一。
血氨的去路:①合成尿素(人体80%~90%的氨以尿素形式排出,鸟类和生活在比较干燥环境中的爬虫类以尿酸形式排出,水生动物可直接排出);②合成谷氨酰胺(这是神经组织解氨毒的重要方式,也是氨的储存、运输方式。在植物体内,氨的运输、储存和利用形式是天冬酰胺);③合成非必需氨基酸或其他含氮物(嘌呤或嘧啶碱)。
2.尿素的合成
(1)部位:肝脏线粒体和胞液。
(2)机理:1932年,德国学者Krebs和Hensleit根据实验研究,提出了鸟氨酸循环(ornithine cycle)合成尿素的学说,这比三羧酸循环发现早5年。实验的根据是:将鼠肝切片置于胺盐和重碳酸盐介质中,有氧条件下保温数小时,发现胺盐含量减少,而尿素增多。当加入少量鸟氨酸、瓜氨酸或精氨酸能大大加速尿素的合成。肝脏又含有精氨酸酶,可催化精氨酸水解生成鸟氨酸和尿素。于是一个循环机制就出现。
(3)反应过程:有5步反应,前2步在肝细胞线粒体,其他3步在胞质溶液中进行。尿素循环本身是四步酶促反应组成。 氨甲酰磷酸合成酶Ⅰ(CPS-Ⅰ)激活氨结合CO2形成氨甲酰磷酸。 鸟氨酸转氨甲酰酶催化氨甲酰磷酸转移到鸟氨酸上生成瓜氨酸。
精氨琥珀酸合成酶催化瓜氨酸与天冬氨酸缩合生成精氨琥珀酸。这是尿素中第2个氮原子的来源。
精氨琥珀酸酶催化精氨琥珀酸裂解为精氨酸和延胡索酸(后者可进入三羧酸循环,并转变为草酰乙酸,转氨后又形成天冬氨酸)。 精氨酸酶水解精氨酸生成尿素,并重新产生鸟氨酸,进入第二轮循环。
总反应式:NH3 + HCO3- +天冬氨酸 +3ATP → CO( N H 2)2 + 延胡索酸 + 2ADP+2Pi+AMP+PPi
尿素的合成是一个耗能的过程,循环中使用了4个高能磷酸键(3分子ATP水解为2ADP及Pi、一个AMP和PPi,后者随之水解为Pi)。
尿素循环产生的延胡索酸可进入TCA,精氨酸与甘氨酸缩合形成瓜基乙酸,进而合成肌酸磷酸(肌肉中的一种高能仓库)。 (4)调节:氨甲酰磷酸合成酶Ⅰ是变构酶,乙酰谷氨酸(AGA)是该酶的激活剂,而精氨酸又是AGA合成酶的激活剂,因此,精氨酸浓度增高时,尿素生成加速。精氨琥珀酸合成酶活性最低,是限速酶。
三、α-酮酸的去路
α-酮酸的去路:①氨基化生成非必需氨基酸(如丙氨酸、谷氨酸和天冬氨酸由一步转氨反应合成,其它的也是通过短的,不太耗能的
途径合成);②转变成糖和脂肪;③氧化供能。
脊椎动物体内的20种氨基酸的碳骨架由各自的酶系进行氧化分解,途径各异,但集中形成5种产物进入柠檬酸循环。这5种产物是乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸和草酰乙酸。它们最后氧化成CO2和H2O,释放能量。
降解为柠檬酸循环中间代谢物的氨基酸还可以进入糖异生途径生成葡萄糖,这样的氨基酸称为生糖氨基酸;那些形成乙酰CoA氨基酸可以成为脂肪酸和酮体的前体,称生酮氨基酸;既可生成柠檬酸循环中间代谢物,又可生成乙酰CoA的氨基酸称为生糖兼生酮氨基酸。氨基酸碳骨架进入TCA的途径如下图。
第三节 氨基酸合成代谢的概况
一、氨基酸的N原子及碳骨架的来源
不同的生物合成氨基酸的能力不同,合成氨基酸的种类也有差异。只有少数生物(能合成固氮酶的微生物和藻类)可以利用N2和简单的碳化合物合成氨基酸。氨可以被所有生物所利用,由N2衍生的氨通过谷氨酸和谷氨酰胺整合到氨基酸等代谢物中,它们的碳骨架来自糖酵解、柠檬酸循环和戊糖磷酸途径。
氨基酸生物合成途径不是分解途径的逆转,是多酶体系催化的多步骤反应。所有自身能合成的非必需氨基酸都是生糖氨基酸。而必需氨基酸有生糖和生酮氨基酸,因为它们转变成糖和转变成酮体的过程是不可逆的,所以脂肪很少或不能用来合成氨基酸。
不同氨基酸的生物合成途径不同,按相关代谢途径的中间物提供的起始物的不同分为六个类型: 二、氨基酸与一碳单位
生物体内许多物质的代谢和含有一个碳原子的基团有关,如卵磷脂的生物合成中有由S-腺苷甲硫氨酸提供甲基的反应。某些氨基酸在分解代谢过程中可以产生一碳单位。
1.概念:甲基、亚甲基(-CH2-)、次甲基(-CH=)、甲酰基、亚胺甲基(-CH=NH)等,称为一碳单位。但CO2不属于这种类型。 2.产生和转运:一碳单位主要来源于丝氨酸、甘氨酸、组氨酸及色氨酸的代谢。一碳单位不能游离存在,必须与载体四氢叶酸(FH4或THFA)结合转运和参与代谢。叶酸为B族维生素,在体内经二氢叶酸还原酶作用,加氢形成FH4。一碳单位通常结合在FH4分子的N5、N10位上,如N5,N10 -甲烯四氢叶酸。
丝氨酸在羟甲基转移酶催化下,生成甘氨酸的过程中产生N5,N10–CH2-FH4,而甘氨酸在甘氨酸裂解酶作用下,也会产生N5,N10–CH2-FH4。
组氨酸在体内经酶促分解产生N-亚氨甲基谷氨酸,进而转化为谷氨酸。(FH4接受亚氨甲基生成N5-CH=NH-FH4,再生成N5,N10=CH-FH4,后者可参与合成嘌呤碱C8原子。)
色氨酸在分解过程中产生甲酸,结合FH4,生成N10-甲酰四氢叶酸,参与合成嘌呤碱C2原子。
不同形式的一碳单位可通过氧化还原反应而彼此转变。其中N5-甲基四氢叶酸的生成是不可逆的,它的含量较多,成为细胞内四氢叶酸的储存形式和甲基的间接供体,即将甲基转移给同型半胱氨酸生成甲硫氨酸(Met),在腺苷转移酶催化下生成S-腺苷甲硫氨酸(SAM),再在甲基转移酶催化下,将活性甲基转移给甲基受体,然后水解去除腺苷生成同型半胱氨酸,从Met活化为SAM到供出甲基及其再生成的整个过程称为甲硫氨酸循环。体内一些有重要生理功能的化合物,如肾上腺素、胆碱、肉碱、肌酸等的合成都是从SAM获得活性甲基。
3.生理功用:主要是作为合成嘌呤和嘧啶核苷酸的原料。是将氨基酸和核苷酸代谢联系起来,与细胞的增殖、生长和机体发育过程有密切关系。
一、 一些氨基酸衍生物的合成
氨基酸除了作为蛋白质的构件分子外,还是许多特殊生物分子的前体,包括激素、辅酶、核苷酸、卟啉、NO及一些胺类分子。以下仅介绍几种:
1.神经递质和激素
氨基酸的脱羧作用在微生物中很普遍,在高等植物组织中亦有,但不是机体氨基酸代谢的主要方式。体内部分氨基酸可在专一性很高的氨基酸脱羧酶的催化下,生成相应的胺。如在脑组织,谷氨酸在谷氨酸脱羧酶作用下,脱去α-羧基生成γ-氨基丁酸(GABA),是一种抑制性神经递质。
组氨酸脱羧生成的组胺可控制血管收缩以及胃分泌胃酸。
色氨酸经羟化后脱羧生成5-羟色胺(5-HT),也是一种神经递质,还是某些非神经组织的激素。
苯丙氨酸和酪氨酸是两种重要的芳香族氨基酸。苯丙氨酸经羟化作用生成酪氨酸。后者参与儿茶酚胺、黑色素等代谢。苯酮酸尿症、白化病等遗传病与它们代谢异常有关。
2.牛磺酸
牛磺酸是某些胆酸的组分,于1827年在牛的胆汁中发现。牛磺酸分布于心、肝、肾、肺、脑、骨骼肌,来源于半胱氨酸氧化脱羧,也被认为是一种抑制性神经递质。
第八章 核苷酸代谢
教学目标:
1.熟悉核酸的酶促降解(核酸酶的种类,嘌呤和嘧啶的分解及代谢终产物)。
2.掌握核苷酸生物合成的基本途径及特点(嘌呤核苷酸从头合成的原料、途径、产物、调节和抗代谢物;嘧啶核苷酸从头合成的原料、途径、产物、调节和抗代谢物)。
3.了解核苷酸合成的补救途径和脱氧核苷酸的合成。
导入:核苷酸是核酸的基本结构单位,具有多种重要的生理功能。人体内的核苷酸主要由机体细胞自身合成。因此,一般不作为营养必需物质。食物中的核酸多以核蛋白的形式存在,受胃酸作用,分解成核酸与蛋白质;核酸经胰液和肠液各种水解酶的作用逐步水解,食物来源的嘌呤和嘧啶极少被机体利用。本章重点讨论核苷酸在体内的合成。
第一节 核酸的酶促降解
一、核酸酶类
动物可以分泌水解酶类来分解食物中的核蛋白和核酸类物质,植物一般不能消化体外的有机物质。但所有生物细胞都含有与核酸代谢有关的酶类。
核酸酶作用核酸链的磷酸二酯键产生寡聚核苷酸和单核苷酸。按作用底物分为核糖核酸酶(RNase)和脱氧核糖核酸酶(DNase);按作用部位有核酸内切酶和核酸外切酶;在细菌中存在一类能识别并水解外源DNA的核酸内切酶,称作限制性内切酶,可用于特异切割DNA,是很有用的工具酶。核酸的分解过程如下:
核酸 → 核苷酸 → 核苷+磷酸 →嘌呤碱和嘧啶碱+戊糖-1-磷酸 核苷酸酶(磷酸单脂酶)水解核苷酸生成核苷和磷酸。
分解核苷的酶有两类:核苷磷酸化酶将核苷和磷酸转化成游离碱基和戊糖-1-磷酸,反应是可逆的,此酶存在广泛。核苷水解酶主要在植物和微生物体内,只对核糖核苷水解,生成碱基和戊糖。
二、嘌呤碱的分解
1.不同种类的生物分解嘌呤碱的能力不同,因而代谢终产物不同。
人、猿、鸟类和某些爬虫类和昆虫以尿酸作为嘌呤碱分解的终产物而排泄。其他生物能进一步降解尿酸为尿嚢素、尿嚢酸、尿素,甚至氨。
2.嘌呤的分解首先是由各种脱氨酶水解脱去氨基,腺嘌呤转化成次黄嘌呤,鸟嘌呤转化为黄嘌呤。脱氨反应也可在核苷或核苷酸水平上发生。在动物组织中,腺嘌呤脱氨酶的含量极少,而腺苷酸脱氨酶和腺苷脱氨酶的活性较高,生成的次黄苷酸和次黄苷经磷酸化酶催化生成次黄嘌呤,然后在黄嘌呤氧化酶作用下氧化生成尿酸。
3.在人体内嘌呤的分解主要在肝脏、小肠及肾脏中进行。正常人血浆中尿酸的含量为20~60mg/L,超过80 mg/L时,尿酸盐晶体沉积于关节、软组织、软骨及肾而导致关节炎、尿路结石和肾病,称痛风症。治疗痛风的常用药物是别嘌呤醇,与次黄嘌呤结构非常类似,在细胞内被转换为别黄嘌呤,是黄嘌呤脱氢酶的一个很强的抑制剂,可防止非正常的高水平的尿酸的形成。
三、嘧啶碱的分解
1.有氨基的嘧啶先水解脱氨,如胞嘧啶脱氨生成尿嘧啶。在人和某些动物体内其脱氨过程也可能在核苷或核苷酸水平进行。先是5'- 核苷酸酶水解三种嘧啶核苷酸生成相应的核苷和磷酸,然后,胞苷经胞苷脱氨酶催化脱氨形成尿苷。尿苷和胸苷经磷酸化酶磷酸解分别生成尿嘧啶和核糖-1-磷酸以及胸腺嘧啶和脱氧核糖-1-磷酸。
2.嘧啶降解产物易溶于水,有氨、碳酸、β-丙氨酸或β-氨基异丁酸。进一步降解生成乙酰C0A和琥珀酰C0A。 胞嘧啶→尿嘧啶→二氢尿嘧啶→β-脲基丙酸→β-丙氨酸→乙酰C0A→TCA 胸腺嘧啶→二氢胸腺嘧啶→β-脲基异丁酸→β-氨基异丁酸→琥珀酰C0A→TCA 3.在哺乳动物中,嘧啶的降解主要在肝脏进行。
第二节 核苷酸的生物合成
一、合成的基本途径
1.有从头合成和补救合成两条基本途径。从头合成是由简单的前体分子(如氨基酸、CO2、NH3、戊糖磷酸)经过较复杂的酶促反应逐步合成核苷酸,是主要途径。补救合成是利用体内游离的碱基或核苷合成核苷酸,是省能的、简单的反应过程,消耗的ATP少,节省一些氨基酸的消耗。
2.肝组织主要进行从头合成,而脑、骨髓、红细胞等只能进行补救合成。新生及年轻组织的内源性核苷酸从头合成比例大;而衰老组织及肝功能降低时,补救合成比例增大。
二、嘌呤核苷酸的合成 (一)从头合成 1.原料和部位
用同位素标记示综实验,证明生物体内能利用二氧化碳、甲酸盐、谷氨酰胺、天冬氨酸和甘氨酸作为合成嘌呤环的前体。嘌呤环的N-1来自天冬氨酸的氨基;N-3、N-9来自谷氨酰胺的酰胺基;C-2、C-8的来自甲酸盐;C-6来自CO2;C-4、C-5、N-7来自甘氨酸。
从头合成的器官主要有肝脏、小肠粘膜及胸腺,在胞液中进行 2.反应过程
嘌呤核苷酸合成的起始物是核糖-5-磷酸(来自戊糖磷酸途径),PRPP合成酶催化ATP的焦磷酸基团转移到核糖-5-磷酸的C-1,形成PRPP。从头合成的最初产物是次黄嘌呤核苷酸(IMP),其他各种嘌呤核苷酸都是IMP衍生而来。
(1)次黄嘌呤核苷酸的合成
由PRPP到IMP的合成过程有十步反应,全过程含酰胺键合成、脱水环化、酰基化、氨基化和裂解几个类型的反应:
第一阶段第5步反应形成咪唑五元环。先是PRPP转酰胺酶(关键酶)催化PRPP脱去焦磷酸并结合来自谷氨酰胺的氨基,生成5-磷酸核糖胺(PRA)。然后由甘氨酰胺核苷酸合成酶、甘氨酰胺核苷酸转甲酰基酶、甲酰甘氨脒核苷酸合成酶、氨基脒唑核苷酸合成酶依次将甘氨酸、一碳单位等基团连接上去形成5-氨基咪唑核苷酸(AIR)。
第二阶段的第10步反应形成嘧啶六元环。涉及的酶有氨基脒唑核苷酸羧化酶、氨基脒唑琥珀基氨甲酰核苷酸合成酶、腺苷酸基琥珀酸裂解酶、氨基脒唑氨甲酰核苷酸转甲酰基酶、IMP环化水解酶。
(2)AMP和GMP是IMP的衍生物
由IMP合成AMP的两步反应类似于IMP合成中的第(7)、(8)步反应。腺苷酸基琥珀酸合成酶与腺苷酸基琥珀酸裂解酶催化,消耗GTP,反应是可逆的。
IMP转换成GMP在IMP脱氢酶和GMP合成酶催化下完成,先氧化成XMP,再以谷氨酰胺上的酰胺基取代XMP中C-2上的氧,消耗ATP,反应是不可逆的。
(二)从头合成的调节和抗代谢物
1.调节位点:有3处。PRPP合成酶受AMP和GMP等的反馈抑制;谷氨酰胺-PRPP转酰胺酶是最主要的调控部位,它受到AMP和GMP等的变构抑制;由IMP转变成AMP或GMP时也受它们的反馈抑制。
2.抗代谢物
抗代谢物是一些与嘌呤、氨基酸或叶酸等结构类似的物质。它们主要以竞争性抑制等方式干扰或阻断嘌呤或嘧啶核苷酸的合成,进而