专题5 数学归纳法
【三年高考】
1,2,3,?,n?(n?N*),1,2,3?,Yn??1.【2015江苏高考,23】 已知集合X??Sn??(a,b)a整除b或b整除a,
a?X,b?Yn?,令f(n)表示集合Sn所含元素的个数.
(1)写出f(6)的值;
(2)当n?6时,写出f(n)的表达式,并用数学归纳法证明. 【解析】(1)f?6??13.
??nn?n?2????,n?6t??23????n?1n?1?n?2?????,n?6t?13??2???nn?2??n?2????,n?6t?223???(2)当n?6时,f?n???(t???).
n?1n???n?2???,n?6t?3??23????n?2??n?n?1?,n?6t?4???3??2??n?2??n?1?n?2?,n?6t?5???3??2?下面用数学归纳法证明:
3)若k?1?6t?2,则k?6t?1,此时有f?k?1??f?k??2?k?2?k?1k?1??2 23??k?1??2?k?1?k?1??2,结论成立;4)若k?1?6t?3,则k?6t?2,此时有?23f?k?1??f?k??2?k?2?kk?2?k?1??1?k?1,结论成立;
??2??k?1??2?23235)若k?1?6t?4,则k?6t?3,此时有f?k?1??f?k??2?k?2?k?1k??2 23??k?1??2?k?1?k?1??1,结论成立;6)若k?1?6t?5,则k?6t?4,此时有?23f?k?1??f?k??1?k?2?立.
kk?1?k?1??1??k?1??2,结论成
??1??k?1??2?2323综上所述,结论对满足n?6的自然数n均成立. 2. 【2014江苏,理23】已知函数f0(x)?(1)求2f1()?sinx(x?0),设fn(x)为fn?1(x)的导数,n?N* x??2f2()的值; 22*?(2)证明:对任意n?N,等式nfn?1()???4?2都成立. fn()?442【答案】(1)?1;(2)证明见解析.
sinxcosxsinx)'??2, xxxcosxsinxsinx2cosx2sinx, f2(x)?f'1(x)?(?2)'????23xxxxx?4?216所以f1()??2,f2()???3,
2?2??【解析】(1)由已知f1(x)?f'0(x)?(故2f1()???2f2()??1.
22?
(1)n?1时命题已经成立,
(2)假设n?k时,命题成立,即kfk?1(x)?xfk(x)?sin(x?对此式两边求导可得kf'k?1(x)?fk(x)?xf'k(x)?cos(x?即(k?1)fk(x)?xfk?1(x)?sin(x?k?), 2k?k?1)?sin(x??), 22k?1?),因此n?k?1时命题也成立. 2n?综合(1)(2)等式nfn?1(x)?xfn(x)?sin(x?)对一切n?N*都成立.
2?????n?1令x?,得nfn?1()?fn()?sin(??),
444442所以nfn?1()???4?2. fn()?4423.【2016山东文12】观察下列等式:
π2π4(sin)?2?(sin)?2??1?2;
333π2π3π4π4(sin)?2?(sin)?2?(sin)?2?(sin)?2??2?3;
55553π2π3π6π4(sin)?2?(sin)?2?(sin)?2?????(sin)?2??3?4;
77773π2π3π8π4(sin)?2?(sin)?2?(sin)?2?????(sin)?2??4?5;
99993…… 照此规律,
π?22π?23π?22nπ?2)?(sin)?(sin)?????(sin)?_________. 2n?12n?12n?12n?14【答案】?n??n?1?
34【解析】通过观察这一系列等式可以发现,等式右边最前面的数都是,接下来是和项数有
34关的两项的乘积,经归纳推理可知是n?n?1?,所以第n个等式右边是?n??n?1?.
3(sin4.【2015高考山东,理11】观察下列各式:
C10?40
1C30?C3?41
1C50?C5?C52?42;
0123C7?C7?C7?C7?43