好文档 - 专业文书写作范文服务资料分享网站

阶梯奥数三年级讲义(教师版)

天下 分享 时间: 加入收藏 我要投稿 点赞

阶梯奥数

解:通过对已知的几个数的前后两项的观察、分析,可发现 (1)的规律是:前项+3=后项。所以应填16。 (2)的规律是:前项-12=后项。所以应填48,36。 (3)的规律是:前项×3=后项。所以应填54,162。 (4)的规律是:前项÷5=后项。所以应填5,1。 (5)的规律是:数列各项依次为

1=1×1, 4=2×2, 9=3×3, 16=4×4, 所以应填5×5=25。 (6)的规律是:数列各项依次为

2=1×2,6=2×3,12=3×4,20=4×5, 所以,应填 5×6=30, 6×7=42。

说明:本例中各数列的每一项都只与它的项数有关,因此an可以用n来表示。各数列的第n项分别可以表示为 (1)an=3n+1;(2)an=96-12n;

(3)an=2×3;(4)an=5;(5)an=n;(6)an=n(n+1)。

这样表示的好处在于,如果求第100项等于几,那么不用一项一项地计算,直接就可以算出来,比如数列(1)的第100项等于3×100+1=301。本例中,数列(2)(4)只有5项,当然没有必要计算大于5的项数了。 例2 找出下列各数列的规律,并按其规律在( )内填上合适的数: (1)1,2,2,3,3,4,( ),( ); (2)( ),( ),10,5,12,6,14,7; (3) 3,7,10,17,27,( ); (4) 1,2,2,4,8,32,( )。

解:通过对各数列已知的几个数的观察分析可得其规律。

(1)把数列每两项分为一组,1,2,2,3,3,4,不难发现其规律是:前一组每个数加1得到后一组数,所以应填4,5。 (2)把后面已知的六个数分成三组:10,5,12,6,14,7,每组中两数的商都是2,且由5,6,7的次序知,应填8,4。 (3)这个数列的规律是:前面两项的和等于后面一项,故应填( 17+27=)44。 (4)这个数列的规律是:前面两项的乘积等于后面一项,故应填(8×32=)256。 例3 找出下列各数列的规律,并按其规律在( )内填上合适的数: (1)18,20,24,30,( ); (2)11,12,14,18,26,( ); (3)2,5,11,23,47,( ),( )。

解:(1)因20-18=2,24-20=4,30-24=6,说明(后项-前项)组成一新数列2,4,6,…其规律是“依次加2”,因为6后面是8,所以,a5-a4=a5-30=8,故 a5=8+30=38。

(2)12-11=1,14-12=2, 18-14=4, 26-18=8,组成一新数列1,2,4,8,…按此规律,8后面为16。因此,a6-a5=a6-26=16,故a6=16+26=42。

(3)观察数列前、后项的关系,后项=前项×2+1,所以 a6=2a5+1=2×47+1=95, a7=2a6+1=2×95+1=191。

例4 找出下列各数列的规律,并按其规律在( )内填上合适的数: (1)12,15,17,30, 22,45,( ),( ); (2) 2,8,5,6,8,4,( ),( )。

解:(1)数列的第1,3,5,…项组成一个新数列12,17, 22,…其规律是“依次加5”,22后面的项就是27;数列的第2,4,6,…项组成一个新数列15,30,45,…其规律是“依次加15”,45后面的项就是60。故应填27,60。

(2)如(1)分析,由奇数项组成的新数列2,5,8,…中,8后面的数应为11;由偶数项组成的新数列8,6,4,… 中,4后面的数应为2。故应填11,2。 练习5

1、按其规律在下列各数列的( )内填数。 1.56,49,42,35,( )。 2.11, 15, 19, 23,( ),…

n-1

5-n

2

阶梯奥数

3.3,6,12,24,( )。 4.2,3,5,9,17,( ),… 5.1,3,4,7,11,( )。 6.1,3,7,13,21,( )。

7.3,5,3,10,3,15,( ),( )。 8.8,3,9,4,10,5,( ),( )。 9.2,5,10,17,26,( )。

10.15,21,18,19,21,17,( ),( )。 11.数列1,3,5,7,11,13,15,17。

(1)如果其中缺少一个数,那么这个数是几?应补在何处? (2)如果其中多了一个数,那么这个数是几?为什么? 答案与提示 练习 1.28。 2.27。 3.48。

4.33。提示:“后项-前项”依次为1,2, 4,8,16,… 5.18。提示:后项等于前两项之和。

6.31。提示:“后项-前项”依次为2,4,6,8,10。 7.3,20。 8.11,6。

9.37。 提示:an=n+1。

10. 24,15。提示:奇数项为15,18,21,24;偶数项为21,19,17,15。 11.(1)缺9,在7与11之间;(2)多15,因为除15以外都不是合数。

2

2、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数. ①2,5,8,11,( ),17,20。 ②19,17,15,13,( ),9,7。 ③1,3,9,27,( ),243。 ④64,32,16,8,( ),2。 ⑤1,1,2,3,5,8,( ),21,34… ⑥1,3,4,7,11,18,( ),47… ⑦1,3,6,10,( ),21,28,36,( ). ⑧1,2,6,24,120,( ),5040。 ⑨1,1,3,7,13,( ),31。 ⑩1,3,7,15,31,( ),127,255。 (11)1,4,9,16,25,( ),49,64。

阶梯奥数

(12)0,3,8,15,24,( ),48,63。 (13)1,2,2,4,3,8,4,16,5,( ). (14)2,1,4,3,6,9,8,27,10,( ). 分析与解答

①不难发现,从第2项开始,每一项减去它前面一项所得的差都等于3.因此,括号中应填的数是14,即:11+3=14。

② 同①考虑,可以看出,每相邻两项的差是一定值2.所以,括号中应填11,即:13—2=11。 不妨把①与②联系起来继续观察,容易看出:数列①中,随项数的增大,每一项的数值也相应增大,即数列①是递增的;数列②中,随项数的增大,每一项的值却依次减小,即数列②是递减的.但是除了上述的不同点之外,这两个数列却有一个共同的性质:即相邻两项的差都是一个定值.我们把类似①②这样的数列,称为等差数列. ③1,3,9,27,(),243。

此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3, 27=9×3.因此,括号中应填 81,即 81= 27×3,代入后, 243也符合规律,即 243=81×3。 ④64,32,16,8,(),2

与③类似,本题中,从第1项开始,每一项是其后面一项的2倍,即:

因此,括号中填4,代入后符合规律。

综合③④考虑,数列③是递增的数列,数列④是递减的数列,但它们却有一个共同的特点:每列数中,相邻两项的商都相等.像③④这样的数列,我们把它称为等比数列。 ⑤ 1, 1, 2, 3, 5, 8,( ), 21, 34…

首先可以看出,这个数列既不是等差数列,也不是等比数列.现在我们不妨看看相邻项之间是否还有别的关系,可以发现,从第3项开始,每一项等于它前面两项的和.即2=1+1,3=2+1,5=2+3,8=3+5.因此,括号中应填的数是 13,即 13=5+8, 21=8+13, 34=13+21。

这个以1,1分别为第1、第2项,以后各项都等于其前两项之和的无穷数列,就是数学上有名的

阶梯奥数

斐波那契数列,它来源于一个有趣的问题:如果一对成熟的兔子一个月能生一对小兔,小兔一个月后就长成了大兔子,于是,下一个月也能生一对小兔子,这样下去,假定一切情况均理想的话,每一对兔子都是一公一母,兔子的数目将按一定的规律迅速增长,按顺序记录每个月中所有兔子的数目(以对为单位,一月记一次),就得到了一个数列,这个数列就是数列⑤的原型,因此,数列⑤又称为兔子数列,这些在高年级递推方法中我们还要作详细介绍。 ⑥1, 3, 4, 7, 11, 18,( ),47…

在学习了数列⑤的前提下,数列⑥的规律就显而易见了,从第3项开始,每一项都等于其前两项的和.因此,括号中应填的是29,即 29=11+18。

数列⑥不同于数列⑤的原因是:数列⑥的第2项为3,而数列⑤为1,数列⑥称为鲁卡斯数列。 ⑦1,3,6,10,( ), 21, 28, 36,( )。 方法1:继续考察相邻项之间的关系,可以发现:

因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确。 方法2:其实,这一列数有如下的规律: 第1项:1=1 第2项:3=1+2 第3项:6=1+2+3 第4项:10=1+2+3+4 第5项:( )

第6项:21=1+2+3+4+5+6 第7项:28=1+2+3+4+5+6+7 第8项;36=1+2+3+4+5+6+7+8 第9项:( )

即这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,

阶梯奥数

第五项为15,即:15= 1+ 2+ 3+ 4+ 5; 第九项为45,即:45=1+2+3+4+5+6+7+8+9。 ⑧1,2,6,24,120,( ),5040。

方法1:这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:

所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即 720=120×6。

方法2:受⑦的影响,可以考虑连续自然数,显然: 第1项 1=1 第2项 2=1×2 第3项 6=1×2×3 第4项 24=1×2×3×4 第5项 120=1×2×3×4×5 第6项 ( )

第7项 5040=1×2×3×4×5×6×7 所以,第6项应为 1×2×3×4×5×6=720 ⑨1,1,3,7,13,( ),31 与⑦类似:

阶梯奥数三年级讲义(教师版)

阶梯奥数解:通过对已知的几个数的前后两项的观察、分析,可发现(1)的规律是:前项+3=后项。所以应填16。(2)的规律是:前项-12=后项。所以应填48,36。(3)的规律是:前项×3=后项。所以应填54,162。(4)的规律是:前项÷5=后项。所以应填5,1。(5)的规律是:数列各项依次为1=1×1,4=2×2,9=3×3,16=4×4,
推荐度:
点击下载文档文档为doc格式
6mq6m76zg779c964hjsm5kaxd91bwp00kxa
领取福利

微信扫码领取福利

微信扫码分享