好文档 - 专业文书写作范文服务资料分享网站

钢中氢、氮、氧的来源及其控制对策

天下 分享 时间: 加入收藏 我要投稿 点赞

钢中氢、氮、氧的来源及其控制对策

高海潮

摘 要:比较了国内外钢中氢、氮、氧的水平,叙述了国外对纯净钢要求不断提高的过程,分析了钢中氢、氮、氧的来源,讨论了氢和氧的变化规律、吹氧过程中氮的变化以及碳和氧的关系,提出了减少钢污染的有效方法,总结出净化钢液的主要技术措施。

关键词:纯净钢 来源 钢污染 控制 措施

Sources and Control Measures of Hydrogen,Nitrogen and

Oxygen in Steel

Gao Haichao

(Ma Anshan Iron & Steel Co.Ltd.)

Abstract:The contents of hydrogen, nitrogen and oxygen in steel produced in our country and other countries are compared in this paper. The

requirements for clean steel are increased. The analysis on sources of H,N,O in steel have been carried out. The rule of changes in H and O contents, N change in oxygen-blowing process and the relationship between C and O have been discussed herein. The effective measures of decreasing steel

pollution are put forward, and the main technology for mloten steel cleaning is then concluded.

Keyworks:clean steel source steel pollution control measure

1 前 言

1996年,我国的钢产量突破1亿 t,成为世界第一产钢大国。但与世界主要发达产钢国家相比,在品种结构、产量质量、技术装备、能源消耗、生产成本等方面还有不少的差距,因此,我们还没有成为世界钢铁强国[1]。

世界上发达的钢铁工业国家都经历了同样的发展历程。即先是粗钢在量上按年份绝对增长,到达一定高峰后调整结构,转而追求品种质量。当品种质量占据市场的绝对份额后,由于激烈的竞争,相继在高附加值的精品上下功夫。人们在20世纪50年代前,主要致力于脱磷、脱硫、脱氧。随现代铁水预处理技术的发展,“三脱”(脱磷、脱硫、脱硅)在生产上已实现了最经济成本[2]。人们可以把普通钢的硫磷比一般标准≯0.040 %再降至更低的水平。这样磷、硫的危害在下降的同时,氢、氮、氧对钢的危害则愈加显露出来。钢中氢的致裂,氮的发脆,全氧与钢中夹杂物的紧密关系,在分析钢的缺陷时已形成了共识。20世纪50年代后,人们着手深入研究对钢的脱氢、脱氮、脱氧。到目前为止从某种意 义上讲,对氢、氮、氧的控制和要求,即反映出整条工艺路线的综合水平

又反映出一个工厂所能生产高附加值产品档次的高低。

2 我国钢中氢、氮、氧的控制与外国先进水平的现状

对钢中氢、氮 、氧要求,我国已有一些部门和行业标准,也包括企业内控标准,在一些特殊用途的钢上做出了规定。如马钢快速客车轮钢中含氢(w)≤2×10-6,重载货车轮钢中含氢(w)≤3.5×10-6;特钢企业生产的轴承钢对全氧提出明确的要求。但在我国的国家标准(GB)中,除了众所周知的对优质碳素结构钢提出过钢中含氮的(w)≯80×10-6以外,到目前为止,根据已有的资料,还没有见到将钢中氢、氮、氧作为有害元素控制的新标准发布或颁布。

我国有炉外精炼装置,经真空处理的钢不足钢产量的1/10。以4大钢铁企业为例。由于各家产品不同,工艺不同,精炼装置的不同,氢、氮、氧波动幅度较大。即便以我国先进的拥有真空处理装备的炼钢厂与国外相比,在这方面仍有较大差距(见表1、表2)。

表1 我国钢中氢、氮、氧控制的先进水平及现状(w) ×10-6

单位 [H] [N] T[O] 宝钢 0.7~1.5 10~27 12~28 武钢 ≤2 ≤25 43~75 太钢 1.5~3.3 25~55 25~33 马钢 1.5~3.5 40~50 22~38 表2 国外钢中氢、氮、氧控制的先进水平及现状(w) ×10-6

品 种 [H] [N] 车轮轮箍 ≤2 30~40 重轨 ≤2 30~40 耐蚀结构钢 ≤1.6 10~40 超低碳薄板 优硬线材 汽车钢板 ≤40 T[O] ≤15 <20 ≤30 10~30 (D≤40μm) 20~30 40~60 (D≤20μm) ≤25 ≤20 ≤10 ≤30 <30 中厚钢板 <1.5 ≤40 合金钢棒材 <2 10~20 管线钢 冷墩钢 ≤35 ≤35

表1、表2是我们收集到的资料,以及对国内外产品的检验报告,

经整理列出的一些代表钢种,仅供参考。

3 结净钢或纯净钢的出现及发展

中国的钢铁市场是国际市场的一部分。中国钢铁企业不能生产的或实物质量上尚存不足的产品,还得从国外大量进口,这个量每年仍有1 000~1 500 万t。要实现从量变到质变,值得一提的是国外生产的所谓“洁净钢”(Clean-steel)或“纯净钢”(Purity-steel),在对钢的纯净度上出现了质的飞跃。通常这种钢是指[S]、[P]、[H]、[N]、T[O]含量(w)总和≯100×10-6。当然还有一种观点就是还得强调夹杂物的形态与尺寸。对不同的钢号有不同的要求,比如滚珠轴承钢,要求夹杂物D<15μm,轮胎钢帘线要求夹杂物D<10μm。除此之外,随炼钢技术的不断提高,超纯净钢的概念也出现在世界冶金的论坛上[3]。德国预测:钢水中可能达到的元素含量为(w)/×10-6:[C]≤20、[P]≤15、[S]≤5、[N]≤15、T[O]≤10、[H]≤0.7,总含量≤65.7×10-6;日本报告:到2000年,在批量生产的超纯净钢中,上述几种有害元素的含量可控制在(w)/×10-6,[C]≤16、[P]≤12、[S]≤4、[N]≤14、T[O]≤5、[H]≤0.5,总含量≤51.5×10-6(见图1、图2)。

图1 日本商业生产纯净钢[C]、[P]、[S]的计划

图2 日本商业生产纯净钢[H]、[N]、[O]的计划

4 影响钢中氢、氮、氧的因素与其控制

4.1 钢中氢、氮、氧的来源

在常压下进行钢的冶炼,气体除铁水中已溶解的外,还可以通过各种原辅料及炉气进入钢液。当进入钢中的气体量超过冶炼过程脱碳沸腾的脱气量时,钢中气体的含量就增加[4]。各种不同的炼钢炉,终点钢水中都含有一定量的氢、氮、氧,实测和统计情况见表3。

表3 三种炼钢炉终点钢水中[H]、[N]、[O]的含量(w) ×10-6

冶炼方法 [H] [N] 平炉 电炉 转炉 [O] 3~8 40~60 (C=0.10%)400~600 4~7 70~140 造还原渣<100 3~5 20~40 (C=0.10%)300~500

4.1.1 氢的来源

氢气在炉气中的分压力很低,大气中氢的分压力为0.053 Pa。因此钢中的氢主要由炉气中的水蒸汽的分压力来决定的(见图3)。氢进入钢液的主要途径是:通过废钢表面的铁锈(XFeO.rFe3O4.2H2O);铁合金中的氢气;增碳剂、脱氧剂、复盖剂、保温剂、造渣剂(Ca(OH)2)、沥青和焦油中的水份;未烤干的钢包、中间包、中注管、汤道;钢锭模的喷涂料;结晶器渗水以及大气中的水份与钢水或炉渣作用而进入钢中。

图3 冶炼时钢液中氢和氧的变化规律

4.1.2 氮的来源

氮气在炉气中的分压力很高,大气中氮的分压力大体保持在

7.8×104 Pa。因此钢中的氮主要是钢水裸露过程中吸入并溶解的。电炉炼钢,包括二次精炼的电弧加热,加速了气体的解离,故[N]含量偏高;平炉治炼时间长增加了氮含量;转炉复吹控制不当,氮氩切换不及时也会增加氮的含量(见图4);铁合金、废钢铁和渣料中的氮也会随炉料带入钢水。

图4 全程吹氧时钢中含氮量的变化 1.氮流量0.25Nm3/min.t终点w(C)-0.065 %; 2.氮流量0.2Nm3/min.t终点w(C)-0.037 %; 3.氮流量0.19Nm3/min.t终点w(C)-0.048 %; 4.氮流量0.13Nm3/min.t终点w(C)-0.032 %; 5.氮流量0.09Nm3/min.t 终点w(C)-0.079 %;

4.1.3 氧的来源

氧在各种炼钢炉冶炼终点时都以一定量存在于钢水中,氧是我们供给的这是不言而喻的。因为炼钢过程首先是氧化过程,脱[P]、脱[S]、脱[Si]、脱[C]都需要向铁水供氧。但随着炼钢过程的进行,尽管工艺操作千变万化,可是炼钢炉内熔池中钢液的[C]、[O]的关系却有着共同的规律性。即随着[C]的逐步降低,[O]却在逐步增高,[C]

钢中氢、氮、氧的来源及其控制对策

钢中氢、氮、氧的来源及其控制对策高海潮摘要:比较了国内外钢中氢、氮、氧的水平,叙述了国外对纯净钢要求不断提高的过程,分析了钢中氢、氮、氧的来源,讨论了氢和氧的变化规律、吹氧过程中氮的变化以及碳和氧的关系,提出了减少钢污染的有效方法,总结出净化钢液的主要技术措施。关键词:纯净钢来源钢污染控制措施SourcesandC
推荐度:
点击下载文档文档为doc格式
6mlk896t3b3gyk6183yn
领取福利

微信扫码领取福利

微信扫码分享