π5π??2kπ?,2kπ?(k?Z).(Ⅱ)见解析;(Ⅲ)见解析. ??44??【解析】(Ⅰ)由已知,有f'(x)?e(cosx?sinx).因此,当x??2k??x???5??,2k???(k?Z)时,44?有sinx?cosx,得f'(x)?0,则f?x?单调递减;当x??2k????3???,2k???(k?Z)时,有44?sinx?cosx,得f'(x)?0,则f?x?单调递增.
所以,f?x?的单调递增区间为?2k????3???,2k???(k?Z),f(x)的单调递减区间为44??5???2k??,2k??(k?Z). ??44??(Ⅱ)证明:记h(x)?f(x)?g(x)?????x?.依题意及(Ⅰ),有g(x)?ex(cosx?sinx),从而?2?????g'(x)??2exsinx.当x??,?时,g'(x)?0,故
?42???????h'(x)?f'(x)?g'(x)??x??g(x)(?1)?g'(x)??x??0.
?2??2?因此,h?x?在区间?,?上单调递减,进而h(x)?h???f???0.
?2??2??42?所以,当x??,?时,f(x)?g(x)??x??0.
242(Ⅲ)证明:依题意,u?xn??f?xn??1?0,即encosxn?1.记yn?xn?2n?,则yn??x?????????????????????????,?,?42?且f?yn??encosyn?eyxn?2n?cos?xn?2n???e?2n??n?N?.
??????由f?yn??e?2n??1?f?y0?及(Ⅰ),得yn?y0.由(Ⅱ)知,当x??,?时,g'(x)?0,所42g?y?0?????g??0.又由(Ⅱ)知,?4?以g?x?在?,?上为减函数,因此g?yn??42?????????f?yn??g?yn???yn??0,故
?2?f?yn??e?2n?e?2n?e?2n?e?2n?. ?yn??????y0?2g?yn?g?yn?g?y0?e?siny0?cosy0?sinx0?cosx0?e?2n?所以,2n???xn?.
2sinx0?cosx0【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 13.【2019年高考浙江】已知实数a?0,设函数f(x)=alnx?(1)当a??x?1,x?0.
3时,求函数f(x)的单调区间; 4x1f(x)?, 求a的取值范围. 均有,??)22ae(2)对任意x?[注:e=2.71828…为自然对数的底数.
?2?【答案】(1)f?x?的单调递增区间是?3,???,单调递减区间是?0,3?;(2)??0,4?.
??【解析】(1)当a??33时,f(x)??lnx?1?x,x?0. 44f'(x)??31(1?x?2)(21?x?1), ??4x21?x4x1?x所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+?).
(2)由f(1)?21,得0?a?.
42a当0?a?令t?2xx21?x?2lnx?0. 时,f(x)?等价于2?42aaa1,则t?22. a2设g(t)?t则g(t)?x?2t1?x?2lnx,t?22,
11?xx(t?1?)2??2lnx.
xx(i)当x??,??? 时,1??1?7??1?22,则 xg(t)?g(22)?8x?421?x?2lnx.
记p(x)?4x?221?x?lnx,x?1,则 7p'(x)?2212xx?1?2x?x?1???xx?1xxx?1
?(x?1)[1?x(2x?2?1)].
xx?1(x?1)(x?1?2x)故
x 1 7 1(,1) 71 (1,??) p'(x) ? 0 + p(x) 所以,p(x)?p(1)?0.
1p() 7单调递减 极小值p(1) 单调递增 因此,g(t)?g(22)?2p(x)?0.
?1??2xlnx?(x?1)?11?(ii)当x??2,?时,g(t)…. g?1?????e7x2x????令q(x)?2xlnx?(x?1),x??lnx?2?11?q'(x)??1?0, , ,则2?x?e7??1?q??. ?7?故q(x)在??11?,?上单调递增,所以q(x)?2e7??由(i)得,q????所以,q(x)<0.
?1??7?27?1?27p????p(1)?0. 77?7??1?q(x)因此g(t)…g?1????0. ???x2x??由(i)(ii)知对任意x???1?0, ,???,t?[22,??),g(t)…2e??即对任意x??x?1?f(x)?,均有. ,???22ae??综上所述,所求a的取值范围是?0,???2??. 4?【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
14.【2019年高考江苏】设函数f(x)?(x?a)(x?b)(x?c),a,b,c?R、f'(x)为f(x)的导函数.
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和f'(x)的零点均在集合{?3,1,3}中,求f(x)的极小值;
(3)若a?0,0?b?1,c?1,且f(x)的极大值为M,求证:M≤【答案】(1)a?2;(2)见解析;(3)见解析.
4. 27【解析】(1)因为a?b?c,所以f(x)?(x?a)(x?b)(x?c)?(x?a). 因为f(4)?8,所以(4?a)?8,解得a?2. (2)因为b?c,
所以f(x)?(x?a)(x?b)?x?(a?2b)x?b(2a?b)x?ab, 从而f'(x)?3(x?b)?x?因为a,b,232233??2a?b?2a?b.令,得或. f'(x)?0x?bx??3?32a?b都在集合{?3,1,3}中,且a?b, 32a?b所以?1,a?3,b??3.
3此时f(x)?(x?3)(x?3),f'(x)?3(x?3)(x?1). 令f'(x)?0,得x??3或x?1.列表如下:
2x f'(x) f(x) (??,?3) + ?3 0 极大值 2(?3,1) – 1 0 极小值 (1,??) + 所以f(x)的极小值为f(1)?(1?3)(1?3)??32.
(3)因为a?0,c?1,所以f(x)?x(x?b)(x?1)?x?(b?1)x?bx,
32f'(x)?3x2?2(b?1)x?b.
因为0?b?1,所以??4(b?1)?12b?(2b?1)?3?0, 则f'(x)有2个不同的零点,设为x1,x2?x1?x2?.
22b?1?b2?b?1b?1?b2?b?1,x2?由f'(x)?0,得x1?.
33列表如下:
x f'(x) (??,x1) + x1 0 极大值 ?x1,x2? – x2 0 极小值 (x2,??) + f(x) 所以f(x)的极大值M?f?x1?. 解法一:
M?f?x1??x13?(b?1)x12?bx1
22b?b?1??xb?1b(b?1)??21?[3x1?2(b?1)x1?b]???x? 1?3999????2?b2?b?1?(b?1)27b(b?1)2??927?b?b?12?
3b(b?1)2(b?1)2(b?1)2???(b(b?1)?1)3
272727?b(b?1)244.因此M?. ??27272727解法二: