好文档 - 专业文书写作范文服务资料分享网站

高等数学教材(较完整) 

天下 分享 时间: 加入收藏 我要投稿 点赞

便是它们的交线方程。 两类常见的曲面 1、柱面

设有动直线L沿一给定的曲线C移动,移动时始终与给定的直线M平行,这样由动直线L所形成的曲面称为柱面,动直线L称为柱面的母线,定曲线C称为柱面的准线。 2、旋转面

设有一条平面曲线C,绕着同一平面内的一条直线L旋转一周,这样由C旋转所形成的曲面称为旋转面,曲线C称为旋转面的母线,直线L称为旋转面的轴。 下面我们再列举出几种常见的二次曲面

二次曲面的名称 椭球面 二次曲面的方程 单叶双曲面 双叶双曲面 椭圆抛物面 双曲抛物面 七、多元函数的微分学

多元函数的概念

我们前面所学的函数的自变量的个数都是一个,但是在实际问题中,所涉及的函数的自变量的个数往往是两个,或者更多。

例:一个圆柱体的体积与两个独立变量r,h有关。`

我们先以二个独立的变量为基础,来给出二元函数的定义。 二元函数的定义

设有两个独立的变量x与y在其给定的变域中D中,任取一组数值时,第三个变量z就以某一确定的法则有唯一确定的值与其对应,那末变量z称为变量x与y的二元函数。

记作:z=f(x,y). 其中x与y称为自变量,函数z也叫做因变量,自变量x与y的变域D称为函数的定义域。 关于二元函数的定义域的问题

我们知道一元函数的定义域一般来说是一个或几个区间.二元函数的定义域通常是由平面上一条或几段光滑曲线所围成的连通的部分平面.这样的部分在平面称为区域.围成区域的曲线称为区域的边界,边界上的点称为边界点,包括边界在内的区域称为闭域,不包括边界在内的区域称为开域。

如果一个区域D(开域或闭域)中任意两点之间的距离都不超过某一常数M,则称D为有界区域;否则称D为无界区域。常见的区域有矩形域和圆形域。如下图所示:

例题:求

的定义域.

,y≥0.

解答:该函数的定义域为:x≥二元函数的几何表示

把自变量x、y及因变量z当作空间点的直角坐标,先在xOy平面内作出函数z=f(x,y)的定义域D;再过D域中得任一点M(x,y)作垂直于xOy平面的有向线段MP,使其值为与(x,y)对应的函数值z;

当M点在D中变动时,对应的P点的轨迹就是函数z=f(x,y)的几何图形.它通常是一张曲面, 其定义域D就是此曲面在xOy平面上的投影。

二元函数的极限及其连续性

在一元函数中,我们曾学习过当自变量趋向于有限值时函数的极限。对于二元函数z=f(x,y)我们同样可以学习当自变量x与y趋向于有限值ξ与η时,函数z的变化状态。

在平面xOy上,(x,y)趋向(ξ,η)的方式可以时多种多样的,因此二元函数的情况要比一元函数复杂得多。如果当点(x,y)以任意方式趋向点(ξ,η)时,f(x,y)总是趋向于一个确定的常数A, 那末就称A是二元函数f(x,y)当(x,y)→(ξ,η)时的极限。 这种极限通常称为二重极限。

下面我们用ε-δ语言给出二重极限的严格定义:

二重极限的定义

如果定义于(ξ,η)的某一去心邻域的一个二元函数f(x,y)跟一个确定的常数A有如下关系:对于任意给定的正数ε,无论怎样小,相应的必有另一个正数δ,凡是满足 的一切(x,y)都使不等式

那末常数A称为函数f(x,y)当(x,y)→(ξ,η)时的二重极限。 正像一元函数的极限一样,二重极限也有类似的运算法则: 二重极限的运算法则

如果当(x,y)→(ξ,η)时,f(x,y)→A,g(x,y)→B. 那末(1):f(x,y)±g(x,y)→A±B; (2):f(x,y)g(x,y)→AB;

(3):f(x,y)/g(x,y)→A/B;其中B≠0

像一元函数一样,我们可以利用二重极限来给出二元函数连续的定义: 二元函数的连续性

如果当点(x,y)趋向点(x0,y0)时,函数f(x,y)的二重极限等于f(x,y)在点(x0,y0)处的函数值f(x0,y0),那末称函数f(x,y)在点(x0,y0)处连续.如果f(x,y)在区域D的每一点都连续,那末称它在区域D连续。

如果函数z=f(x,y)在(x0,y0)不满足连续的定义,那末我们就称(x0,y0)是f(x,y)的一个间断点。 关于二元函数间断的问题

二元函数间断点的产生与一元函数的情形类似,但是二元函数间断的情况要比一元函数复杂,它除了有间断点,还有间断线。 二元连续函数的和,差,积,商(分母不为零)和复合函数仍是连续函数。

.

.

成立,

例题:求下面函数的间断线

解答:x=0与y=0都是函数的间断线。

偏导数

在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的\变化率\。然而,由于自变量多

了一个,情况就要复杂的多.在xOy平面内,当变点由(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来时不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。

在这里我们只学习(x,y)沿着平行于x轴和平行于y轴两个特殊方位变动时f(x,y)的变化率。 偏导数的定义

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数 z=f(x,y)有增量(称为对x的偏增量)

△xz=f(x0+△x)-f(x0,y0). 如果△xz与△x之比当△x→0时的极限

那末此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数。

存在,

记作:f'x(x0,y0)或 关于对x的偏导数的问题

函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数 同样,把x固定在x0,让y有增量△y,如果极限

那末此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数.

存在,

记作f'y(x0,y0)或偏导数的求法

当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时, 我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导, 那末称函数f(x,y)在域D可导。

此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数, 称为f(x,y)对x(对y)的偏导函数。简称偏导数。 例题:求z=xsiny的偏导数

2

解答:把y看作常量对x求导数,得

把x看作常量对y求导数,得

注意:二元函数偏导数的定义和求法可以推广到三元和三元以上函数。

例题:求的偏导数。

解答:我们根据二元函数的偏导数的求法来做。

把y和z看成常量对x求导,得.

把x和z看成常量对y求导,得.

把x和y看成常量对z求导,得高阶偏导数

.

如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导, 那末这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。 二元函数的二阶偏导数有四个:f\,f\,f\,f\

注意:f\与f\的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;后者是先对y求偏导再对x求偏导.当f\与f\都连续时,求导的结果于求导的先后次序无关。 例题:求函数

的二阶偏导数.

解答:,,

全微分

我们已经学习了一元函数的微分的概念了,现在我们用类似的思想方法来学习多元函数的的全增量,从而把微分的概念推广到多元函数。

这里我们以二元函数为例。 全微分的定义

函数z=f(x,y)的两个偏导数f'x(x,y),f'y(x,y)分别与自变量的增量△x,△y乘积之和 f'x(x,y)△x+f'y(x,y)△y

高等数学教材(较完整) 

便是它们的交线方程。两类常见的曲面1、柱面设有动直线L沿一给定的曲线C移动,移动时始终与给定的直线M平行,这样由动直线L所形成的曲面称为柱面,动直线L称为柱面的母线,定曲线C称为柱面的准线。2、旋转面设有一条平面曲线C,绕着同一平面内的一条
推荐度:
点击下载文档文档为doc格式
6ltnl0277y9ersb9r16x
领取福利

微信扫码领取福利

微信扫码分享