销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.
24.(10分)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE. (1)如图1,若AB=4
,BE=5,求AE的长;
(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.
五、解答题(本大题2个小题,第25小题10分、第26小题12分,共22分) 25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6. (1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=
,当F(s)+F(t)=18时,求k的最大值.
x2﹣
x﹣
与x轴交
26.(12分)如图,在平面直角坐标系中,抛物线y=
于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值; (3)点G是线段CE的中点,将抛物线y=
x2﹣
x﹣
沿x轴正方向平移
得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
2017年重庆市中考数学试卷(B卷)
参考答案与试题解析
一、选择题(本大题共12小题,每小题4分,共48分) 1.(4分)(2017?重庆)5的相反数是( ) A.﹣5 B.5
C.﹣ D.
【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 【解答】解:5的相反数是﹣5, 故选:A.
【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.
2.(4分)(2017?重庆)下列图形中是轴对称图形的是( )
A. B. C. D.
【分析】根据轴对称图形的概念求解.
【解答】解:A、不是轴对称图形,不合题意; B、不是轴对称图形,不合题意; C、不是轴对称图形,不合题意; D、是轴对称图形,符合题意. 故选:D.
【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3.(4分)(2017?重庆)计算a5÷a3结果正确的是( )
A.a B.a2 C.a3 D.a4
【分析】根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,求出a5÷a3的计算结果是多少即可. 【解答】解:a5÷a3=a2 故选:B.
【点评】此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
4.(4分)(2017?重庆)下列调查中,最适合采用抽样调查的是( ) A.对某地区现有的16名百岁以上老人睡眠时间的调查 B.对“神舟十一号”运载火箭发射前零部件质量情况的调查 C.对某校九年级三班学生视力情况的调查 D.对某市场上某一品牌电脑使用寿命的调查
【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
【解答】解:A、人数不多,容易调查,适合普查.
B、对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;
C、班内的同学人数不多,很容易调查,因而采用普查合适; D、数量较大,适合抽样调查; 故选D.
【点评】本题考查全面调查与抽样调查,理解全面调查与抽样调查的意义是解题的关键.
5.(4分)(2017?重庆)估计
+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
【分析】先估算出【解答】解:∵3<∴4<即
+1<5,
的范围,即可得出答案. <4,
+1在4和5之间,
故选C.
【点评】本题考查了估算无理数的大小,能估算出
6.(4分)(2017?重庆)若x=﹣3,y=1,则代数式2x﹣3y+1的值为( ) A.﹣10
B.﹣8 C.4
D.10
的范围是解此题的关键.
【分析】代入后求出即可. 【解答】解:∵x=﹣3,y=1,
∴2x﹣3y+1=2×(﹣3)﹣3×1+1=﹣8, 故选B.
【点评】本题考查了求代数式的值,能正确代入是解此题的关键,注意:代入负数时要有括号.
7.(4分)(2017?重庆)若分式A.x>3
B.x<3 C.x≠3 D.x=3
有意义,则x的取值范围是( )
【分析】分式有意义的条件是分母不为0. 【解答】解:∵分式∴x﹣3≠0, ∴x≠3; 故选:C.
【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
8.(4分)(2017?重庆)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为( ) A.1:4
B.4:1
C.1:2
D.2:1
有意义,
【分析】利用相似三角形面积之比等于相似比的平方计算即可.