同济大学第六版高等数学上下册课后习题
答案12-11
精品好文档,推荐学习交流
习题12?11
1? 试用幂级数求下列各微分方程的解? (1)y??xy?x?1?
解 设方程的解为y?a0??anxn? 代入方程得
n?1? ?nanxn?1?n?1?a0x??anxn?1?x?1?
n?1??即 (a1?1)?(2a2?a0?1)x??[(n?2)an?2?an]xn?1?0?
n?1可见 a1?1?0? 2a2?a0?1?0? (n?2)an?2?an?0(n?1? 2? ? ? ?)? 于是 a1?1? a2? a2k?1?1?a01?a0? a3?1? a4?? ? ? ? ? 24!!3!!1?a01? a2k?? ? ? ??
(2k)!!(2k?1)!!?所以 y?a0??[k?1?1x2k?1?1?a0x2k]
(2k?1)!!(2k)!!?211x2k?1x?(1?a0)?()k ?a0??k?1(2k?1)!!k?1k!2 ??1?(1?a0x2)e2??1x2k?1?
!k?1(2k?1)!?1??1x2k?1?
!k?1(2k?1)!??即原方程的通解为 (2)y???xy??y?0?
x2y?Ce2 解 设方程的解为y??anxn? 代入方程得
n?0仅供学习与交流,如有侵权请联系网站删除 谢谢5
?精品好文档,推荐学习交流
?n(n?1)anxn?2??n?2?x?nanxn?1?n?1??anxn?0?
n?0?即 a0?2a2??[(n?2)(n?1)an?2?(n?1)an]xn?0?
n?1(?1)k?1(?1)k11a?a?a? ? ? ?? 于是 a2??a0?a3??a1? ? ? ??a2k?1?(2k?1)!!12k(2k)!!023(?1)ka02k(?1)ka12k?1x?x] 所以 y?a0?a1x??[(2k)!!(2k?1)!!k?1??2(?1)k?12k?11xkx ?a0?(?)?a1?
k!!2(2k?1)!!k?0k?1??x ?a0e22(?1)k?12k?1? ?a1?x!k?1(2k?1)!?即原方程的通解为
?xy?C1e22(?1)k?12k?1? ?C2?x(2k?1)!!k?1? (3)xy???(x?m)y??my?0(m为自然数)? 解 设方程的解为y??anxn? 代入方程得
n?0? x?n(n?1)anxn?2?n?2?(x?m)?nanxn?1?n?1?m?anxn?0?
n?0?即 m(a0?a1)??[(n?1)(n?m)an?1?(n?m)an]xn?0?
n?1?可见 (a0?a1)m?0? (n?m)[(n?1)an?1?an]?0 (n?m)?
仅供学习与交流,如有侵权请联系网站删除 谢谢5
最新同济大学第六版高等数学上下册课后习题答案12-11
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)