第四章 统计数据的概括性度量
4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:
2 4 7 10 10 10 12 12 14 15
要求:
(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。 (4)说明汽车销售量分布的特征。
解:
Statistics
汽车销售数量 N Mean Median Mode Std. Deviation Percentiles
25 50 75 Valid Missing
10 0 9.60 10.00 10 4.169 6.25 10.00 12.50 Histogram32Frequency1Mean =9.6 Std. Dev. =4.169 N =1002.557.51012.515汽车销售数量 4.2 随机抽取25个网络用户,得到他们的年龄数据如下: 单位:周岁
19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 41 20 31 17 23
要求;
(1)计算众数、中位数:
排序形成单变量分值的频数分布和累计频数分布:
网络用户的年龄
Frequency Percent Cumulative Frequency Cumulative Percent 1 / 10
15 16 17 18 19 20 21 22 23 Valid 24 25 27 29 30 31 34 38 41 Total 1 1 1 1 3 2 1 2 3 2 1 1 1 1 1 1 1 1 25 4.0 4.0 4.0 4.0 12.0 8.0 4.0 8.0 12.0 8.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 100.0 1 2 3 4 7 9 10 12 15 17 18 19 20 21 22 23 24 25 4.0 8.0 12.0 16.0 28.0 36.0 40.0 48.0 60.0 68.0 72.0 76.0 80.0 84.0 88.0 92.0 96.0 100.0 从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。 (2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。 (3)计算平均数和标准差;
Mean=24.00;Std. Deviation=6.652 (4)计算偏态系数和峰态系数: Skewness=1.080;Kurtosis=0.773
(5)对网民年龄的分布特征进行综合分析:
分布,均值=24、标准差=6.652、呈右偏分布。如需看清楚分布形态,需要进行分组。 为分组情况下的直方图:
为分组情况下的概率密度曲线:
2 / 10
分组:
1、确定组数:
,取k=6
2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取5 3、分组频数表
网络用户的年龄 (Binned)
<= 15 16 - 20 21 - 25 Valid 26 - 30 31 - 35 36 - 40 41+ Total Frequency 1 8 9 3 2 1 1 25 Percent 4.0 32.0 36.0 12.0 8.0 4.0 4.0 100.0 Mean Std. Deviation Variance Skewness Kurtosis Cumulative Frequency 1 9 18 21 23 24 25 23.3000 7.02377 49.333 1.163 1.302 Cumulative Percent 4.0 36.0 72.0 84.0 92.0 96.0 100.0 分组后的均值与方差:
分组后的直方图:
3 / 10
4.3 某银行为缩短顾客到银行办理业务等待的时间。准备采用两种排队方式进行试验:一种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客。得到第一种排队方式的平均等待时间为7.2分钟,标准差为1.97分钟。第二种排队方式的等待时间(单位:分钟)如下:
5.5 6.6 6.7 6.8 7.1 7.3 7.4 7.8 7.8 要求:
(1)画出第二种排队方式等待时间的茎叶图。
第二种排队方式的等待时间(单位:分钟) Stem-and-Leaf Plot
Frequency Stem & Leaf
1.00 Extremes (=<5.5) 3.00 6 . 678 3.00 7 . 134 2.00 7 . 88 Stem width: 1.00
Each leaf: 1 case(s)
(2)计算第二种排队时间的平均数和标准差。
Mean 7 Std. Deviation 0.714143 Variance 0.51
(3)比较两种排队方式等待时间的离散程度。 第二种排队方式的离散程度小。
(4)如果让你选择一种排队方式,你会选择哪—种?试说明理由。 选择第二种,均值小,离散程度小。
4.4 某百货公司6月份各天的销售额数据如下: 单位:万元
257 276 297 252 238 31 271 292 261 28 80 272 284 268 3 249
要求:
(1)计算该百货公司日销售额的平均数和中位数。 (2)按定义公式计算四分位数。 (3)计算日销售额的标准差。 解:
Statistics
百货公司每天的销售额(万元)
291 269 78 258 295
4 / 10
N Mean Median Std. Deviation Percentiles
Valid Missing
30 0
274.1000 272.5000 21.17472
25 50 75
260.2500 272.5000 291.2500
4.5 甲乙两个企业生产三种产品的单位成本和总成本资料如下: 产品 单位成本 总成本(元) 名称 A B C (元) 15 20 30 甲企业 2 100 3 000 1 500 乙企业 3 255 1 500 1 500 要求:比较两个企业的总平均成本,哪个高,并分析其原因。 甲企业 乙企业 产品名称 单位成本(元) 总成本(元) 产品数 总成本(元) 产品数 A 55 217 B C 2 3 0 75 0 平均成本(元) 19.41176471 18.28947368 调和平均数计算,得到甲的平均成本为19.41;乙的平均成本为18.29。甲的中间成本的产品多,乙的低成本的产品多。
4.6 在某地区抽取120家企业,按利润额进行分组,结果如下: 按利润额分组(万元) 企业数(个) 200~300 300~400 400~500 500~600 600以上 合 计 要求: (1)计算120家企业利润额的平均数和标准差。 (2)计算分布的偏态系数和峰态系数。 解:
Statistics
企业利润组中值Mi(万元) N Mean Std. Deviation Skewness
Std. Error of Skewness Kurtosis
Std. Error of Kurtosis
Valid Missing
120 0
426.6667 116.48445
0.208 0.221 -0.625 0.438 19 30 42 18 11 120
5 / 10