【解析】 【分析】
根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可. 【详解】 解:∵函数y=-∴-2y1=-y2=
31的图象上有三个点(-2,y1),(-1,y2),(,y3), x21y3=-3, 2∴y1=1.5,y2=3,y3=-6, ∴y2>y1>y3. 故答案为y2>y1>y3. 【点睛】
本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法
解析:1 【解析】
试题分析:根据题意可知这是分式方程,答案为1.
考点:分式方程的解法
=0,然后根据分式方程的解法分解因式后
约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40
1320132030??. x?40x60【解析】 【分析】
解析:
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可. 【详解】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时, 根据题意得:故答案为:
1320132030??. x?40x601320132030??. x?40x60【点睛】
本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.
19.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键 解析:2
【解析】 【分析】
先把8化简为22,再合并同类二次根式即可得解. 【详解】
8?2?22-2=2.
故答案为2. 【点睛】
本题考查了二次根式的运算,正确对二次根式进行化简是关键.
20.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=
解析:10 【解析】 【分析】
试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解. 【详解】
(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2) =[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2) =(-2)2+2×3 =10 故答案为10 【点睛】
2ab+b2求解,整体思想的运用使运算更加简便. 本题考查了完全平方公式:(a±b)2=a2±
三、解答题
121.
3【解析】 【分析】
根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.
【详解】 原式?=
12?2?1?2??1 321?2?1?2?1 31?. 3【点睛】
本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.
4. 9【解析】 【分析】
22.
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可. 【详解】 解:画树状图得:
∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况, ∴两次两次抽取的卡片上数字之和是奇数的概率为【点睛】
本题考查列表法与树状图法. 23.(1)-2;(2)【解析】 【分析】
(1)根据点E在一次函数图象上,可求出m的值;
(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形
OBEC=S△OBE+S△OCE即可得解;
4. 9;(3)≤a≤或3≤a≤6.
(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解. 【详解】
解:(1)∵点E(m,?5)在一次函数y=x?3图象上,
∴m?3=?5, ∴m=?2;
(2)设直线l1的表达式为y=kx+b(k≠0), ∵直线l1过点A(0,2)和E(?2,?5), ∴
,解得
,
∴直线l1的表达式为y=x+2, 当y=x+2=0时,x=∴B点坐标为(
,0),C点坐标为(0,?3),
; ;
,即点N(
,1),
5+×2×3=∴S四边形OBEC=S△OBE+S△OCE=××
(3)当矩形MNPQ的顶点Q在l1上时,a的值为
矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=∴a的值为
+2=
;
矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,
矩形MNPQ继续向右平移,当点N在l2上时,x?3=1,解得x=4,即点N(4,1), ∴a的值为4+2=6, 综上所述,当【点睛】
本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围. 24.(1)证明见解析;(2)四边形AECF是菱形.证明见解析. 【解析】 【分析】
(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA判定△ABE≌△AD′F;
(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证. 【详解】
解:(1)由折叠可知:∠D=∠D′,CD=AD′, ∠C=∠D′AE.
∵四边形ABCD是平行四边形, ∴∠B=∠D,AB=CD,∠C=∠BAD.
≤a≤
或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD, 即∠1+∠2=∠2+∠3. ∴∠1=∠3. 在△ABE和△AD′F中
?D???B∵{AB?AD? ?1??3∴△ABE≌△AD′F(ASA).
(2)四边形AECF是菱形.
证明:由折叠可知:AE=EC,∠4=∠5. ∵四边形ABCD是平行四边形, ∴AD∥BC. ∴∠5=∠6. ∴∠4=∠6. ∴AF=AE. ∵AE=EC, ∴AF=EC. 又∵AF∥EC,
∴四边形AECF是平行四边形. 又∵AF=AE,
∴平行四边形AECF是菱形.
考点:1.全等三角形的判定;2.菱形的判定. 25.(1)?3a2?5ab?3b2;(2)【解析】 【分析】
m. m?2?1?根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可; ?2?括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.
【详解】
?1??a?b??a?2b??(2a?b)2
=a2?2ab?ab?2b2?4a2?4ab?b2
??3a2?5ab?3b2;
1?m2?4m?4?(2)?1? ??2m?1m?m??=
m?2m?m?1?? m?1(m?2)2m. m?2【点睛】 ?本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.