数字信号处理课后答案
1.2 教材第一章习题解答
1. 用单位脉冲序列?(n)及其加权和表示题1图所示的序列。 解:
x(n)??(n?4)?2?(n?2)??(n?1)?2?(n)??(n?1)?2?(n?2)?4?(n?3)
?0.5?(n?4)?2?(n?6)?2n?5,?4?n??1?2. 给定信号:x(n)??6,0?n?4
?0,其它?(1)画出x(n)序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示x(n)序列; (3)令x1(n)?2x(n?2),试画出x1(n)波形; (4)令x2(n)?2x(n?2),试画出x2(n)波形; (5)令x3(n)?2x(2?n),试画出x3(n)波形。 解:
(1)x(n)的波形如题2解图(一)所示。 (2)
x(n)??3?(n?4)??(n?3)??(n?2)?3?(n?1)?6?(n)
?6?(n?1)?6?(n?2)?6?(n?3)?6?(n?4)(3)x1(n)的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)x2(n)的波形是x(n)的波形左移2位,在乘以2,画出图形如
题2解图(三)所示。
(5)画x3(n)时,先画x(-n)的波形,然后再右移2位,x3(n)波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1)x(n)?Acos(?n?),A是常数;
837?(2)x(n)?e解:
1j(n??)8。
2?14?,这是有理数,因此是周期序列,周期是T=14; w312?(2)w?,?16?,这是无理数,因此是非周期序列。
8w(1)w??,375. 设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)y(n)?x(n)?2x(n?1)?3x(n?2); (3)y(n)?x(n?n0),n0为整常数; (5)y(n)?x2(n); (7)y(n)??x(m)。
m?0n解:
(1)令:输入为x(n?n0),输出为
y'(n)?x(n?n0)?2x(n?n0?1)?3x(n?n0?2)y(n?n0)?x(n?n0)?2x(n?n0?1)?3x(n?n0?2)?y(n)'
故该系统是时不变系统。
y(n)?T[ax1(n)?bx2(n)] ?ax1(n)?bx2(n)?2(ax1(n?1)?bx2(n?1))?3(ax1(n?2)?bx2(n?2))T[ax1(n)]?ax1(n)?2ax1(n?1)?3ax1(n?2)