若为后者,则x?1?4t,有?x?2t??x?2t??1,于是
22?x?2t?1?x?1 解得:? 矛盾。故xn?n?N??不是完全平方数。 ??x?2t?1?t?0
三.解:(1)若p?q(?2),则p?q?1?1(modp),与ppq?qp?1矛盾!故q?p?1 ① 由pqpq?qp?1知:qpq?1, 又由费马小定理得:p?p(modq),即qpq?p ∴qpq?1?(pq?p),即qp?1 ② 由①、②,只有q?p?1,故p?2,qqpq?3
pq?qp?1?3?Z,故(p,q)?(2,3)为所求数组。 经检验,此时
pq2(2)我们来求出一个a。p?q时,取a?p即可。当p?q时,
10 若q?1(modp) 设 q?kp?1(k?N) 取 a?kp(p q?(kp?1)?1?1?kp(p pa?a?pkp(pkp?1*kp?1?1)?1
aak?1p?1)??a(mo③dp
1kppkp?1?2)?kp?(p?1)?1?(p)?pkp?1?kp?pkp?1?(kp?1 )kp?1?kp?pkp?1?(kp?1)?q(pkp?1?1)?0(modq) ④ ?paqapapa 由③及费马小定理:p?q?a?q?a?q?a?0(modp)
aqap 由④及费马小定理:类似可得:p?q?a?0(modq)
又 (p,q)?1,∴ pqpaq?qap?a 20 若q?1(modp)令 a?(p?1)(q?1)a1 qap?1?)1kp?a1?N* 待定
a11 )(q?1?a)1?paq?a?qa?a?(qp?1)?(p?1)q(? ?1?(p?1)(q?1)a1(modp)
?paq?a?1?(p?1)(q?1)a1(modq)
只须取a1,使(p?1)(q?1)a1??1(modpq)即可 ∵ q?1(modp),∴ (p?1,q)?(q?1,p)?1
同理:q ∴
ap?(p?1)(q?1),pq)??1
* 当 a1跑遍模pq的完系时,(p?1)(q?1)a1也跑遍模pq的完系,故可取a1?N,使(p?1)(q?1)a1??1(modpq)成立, 综上,必有正整数 a满足条件。
四.解:(1)抛物线y?2px的焦点为(2pp,0),设l的直线方程为y?k(x?)(k?0). 22?y2?2px122?222kx?(pk?2p)x?pk?0,设M,N的横坐标分别为x1,x2 由?得p4?y?k(x?)?2x1?x2pk2?2ppk2?2ppk2?2pppx??y?k(?)?则x1?x2?,得,, PPk222k22k22kp1pk2?2p1). 而PQ?l,故PQ的斜率为?,PQ的方程为y???(x?2kk2kkpk2?2p3pk2?2p?代入yQ?0得xQ?p?.设动点R的坐标(x,y), 则
2k22k21p?x?(x?x)?p?PQ?p2?2k22, 因此p(x?p)?2?4y(y?0), ?k?y?1(y?y)?pPQ?22k?2故PQ中点R的轨迹L的方程为4y?p(x?p)(y?0).
2(2) 显然对任意非零整数t,点(p(4t?1),pt)都是L上的整点,故L上有无穷多个整点. 反设L上有一个整点(x,y)到原点的距离为整数m,不妨设x?0,y?0,m?0, 则
222??x?y?m(i), 因为p是奇素数,于是py, 从(ii)可推出px, 再由(i)可推出pm, ?2??4y?p(x?p)(ii)222??x1?y1?m1(iii)令x?px1,y?py1,m?pm1, 则有?2,
??4y1?x1?1(iv)x?12由(iii),(iv)得x1?1?m12,于是(8x1?1)2?(8m1)2?17,
4即(8x1?1?8m1)(8x1?1?8m1)?17,于是8x1?1?8m1?17,8x1?1?8m1?1,
得x1?m1?1,故y1?0,有y?py1?0, 但L上的点满足y?0, 矛盾! 因此, L上任意点到原点的距离不为整数.