2020年最新
??的分布列为
? P 1 2 3 1 58 2512 25181257. ?E??1??2??3??52525252,3),则P(A1)?解法二:(Ⅰ)记“该选手能正确回答第i轮的问题”的事件为Ai(i?1,4,5P(A2)?32,P(A3)?. 55?该选手被淘汰的概率P?1?P(A1A2A3)?1?P(A1)P(A2)P(A3)
432101. ?1????555125(Ⅱ)同解法一. 19.(本小题满分12分) 解法一:(Ⅰ)PA⊥平面ABCD,BD?平面ABCD.?BD⊥PA. 又tanABD?AD3BC?,tanBAC??3. AB3AB?∠ABD?30,∠BAC?60,?∠AEB?90,即BD⊥AC.
AC?A.?BD⊥平面PAC.
(Ⅱ)过E作EF⊥PC,垂足为F,连接DF.
DE⊥平面PAC,EF是DF在平面PAC上的射影,由三垂线定理知PC⊥DF, ?∠EFD为二面角A?PC?D的平面角.
P 又∠DAC?90?∠BAC?30,
F
A E
B C
D 又PA?DE?ADsinDAC?1,
AE?ABsinABE?3,
又AC?43,?EC?33,PC?8.
由Rt△EFC∽Rt△PAC得EF?PAEC33?. PC2在Rt△EFD中,tanEFD?DE2323?,?∠EFD?arctan. EF9923. 9?二面角A?PC?D的大小为arctan2020年最新
2020年最新
解法二:(Ⅰ)如图,建立坐标系,
0,0),C(23,6,0),D(0,则A(0,0,0),B(23,2,0),P(0,0,4), ?AP?(0,0,4),AC?(23,6,0),BD?(?23,2,0),
?BDAP?0,BDAC?0.?BD⊥AP,BD⊥AC,
又PAAC?A,?BD⊥平面PAC.
P z (Ⅱ)设平面PCD的法向量为n?(x,y,1), 则CDn?0,PDn?0,
A B x E D y C
?4,0),PD?(0,2,?4), 又CD?(?23,?43??23x?4y?0,,?x???解得???3
??2y?4?0,?y?2,??43??n??2,1???3,?
??2,0, 平面PAC的法向量取为m?BD??23,??cos 解:(Ⅰ)f(x)的定义域为R,?x?ax?a?0恒成立,???a?4a?0, 22?0?a?4,即当0?a?4时f(x)的定义域为R. x(x?a?2)ex(Ⅱ)f?(x)?2,令f?(x)≤0,得x(x?a?2)≤0. 2(x?ax?a)由f?(x)?0,得x?0或x?2?a,又 0?a?4, ?0?a?2时,由f?(x)?0得0?x?2?a; 当a?2时,f?(x)≥0;当2?a?4时,由f?(x)?0得2?a?x?0, 即当0?a?2时,f(x)的单调减区间为(0,2?a); 2020年最新 2020年最新 当2?a?4时,f(x)的单调减区间为(2?a,0). 21.(本小题满分14分) ?c6,??解:(Ⅰ)设椭圆的半焦距为c,依题意?a3 ?a?3,?x2?b?1,?所求椭圆方程为?y2?1. 3(Ⅱ)设A(x1,y1),B(x2,y2). (1)当AB⊥x轴时,AB?3. (2)当AB与x轴不垂直时, 设直线AB的方程为y?kx?m. 由已知m1?k2?3232,得m?(k?1). 42222把y?kx?m代入椭圆方程,整理得(3k?1)x?6kmx?3m?3?0, 3(m2?1)?6km,x1x2?. ?x1?x2?23k2?13k?1?36k2m212(m2?1)???AB?(1?k)(x2?x1)?(1?k)?2? 22(3k?1)3k?1??222212(k2?1)(3k2?1?m2)3(k2?1)(9k2?1)?? 2222(3k?1)(3k?1)12k21212?3?4?3?(k?0)≤3??4. 219k?6k?12?3?69k2?2?6k当且仅当9k?231k??,即时等号成立.当k?0时,AB?3, 3k2综上所述ABmax?2. 133??当AB最大时,△AOB面积取最大值S??ABmax?. 22222.(本小题满分12分) 2020年最新 2020年最新 解:(Ⅰ)当k?1,由a11?S1?2a1a2及a1?1,得a2?2. 当k≥2时,由a11k?Sk?Sk?1?2akak?1?2ak?1ak,得ak(ak?1?ak?1)?2ak. 因为ak?0,所以ak?1?ak?1?2.从而a2m?1?1?(m?1)2?2m?1. a2m?2?(m?1)2?2m,m?N*.故ak?k(k?N*). (Ⅱ)因为abk?1k?k,所以 b??n?k??n?k. kak?1k?1所以bbk?1b2k?bkbb?(?1)k?1(n?k?1)(n?k?2)(n?1)k?b11bk?2(k?1)211 1k?(?1)k?11nCkn(k?1,2,,n). 故bb1123n?1n1?b2?3??bn?n??Cn?Cn?Cn??(?1)Cn?? ?1n?1???C0n?C1n?C2n??(?1)nCnn????1n. B卷选择题答案: 1.D 2.C 3.A 4.B 5.B 6.C 7.D 8.A 10.D 11.A 12.C 2020年最新 9.B