好文档 - 专业文书写作范文服务资料分享网站

毕业论文(图像匹配) 

天下 分享 时间: 加入收藏 我要投稿 点赞

毕业设计(论文)

目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信息法、变换域法和基于特征法,其中基于特征法又可以根据所用的特征属性的不同而细分为若干类别。以下将根据这一分类原则来讨论目前已经报道的各种图像配准方法和原理。

1.3 研究现状

国外从20世纪60年代就开始在图像配准领域进行研究,但直到1980年代才开始引起学者们的关注。到上世纪末,单模图像配准问题已基本解决,但多模图像配准由于涉及模式和领域的复杂性,仍需密切关注。国际上对图像配准技术曾做过调查,其结论是1990年代初技术就明显增加。而国内从1990年代初才开始涉足此领域。与灰度相关的图像配准算法是图像配准算法中比较经典的一种,很多配准技术都以它为基础进行延伸和扩展。

朱近,司美玲具体阐述了用局部灰度极值方法进行多光谱图像配准算法的研究过程。针对多光谱遥感图像,提出了一种基于局部灰度极值的配准方法:通过在基准图像和待配准图像中同步寻找含有灰度极值的小区域,再用多项式对极值区域进行曲面拟合,最后,分别计算小区域的极值点作为特征点进行配准。并用真实和模拟多光谱图像进行了试验结果显示该课题提出具有算法简单和配准精度高的特点。这是与灰度相关图像配准算法有关的一个扩展应用。

林相波,邱天爽提出一种新的灰度和形状信息相结合的全自动同模态医学图像非刚性配准——分割算法[1],将欧氏距离表示的形状信息融入基于灰度的配准算法中,构造出新的代价函数。该算法在医学图像多目标分割的应用中,能够较好地完成灰度相近、边缘模糊、间距较小的不同结构的分割,结果表明,该算法优于基于灰度信息的图像配准算法。

张密,吴效明阐述图像配准在放疗中应用的关键问题[2],对基于灰度的3种配准方法的性能做深入研究,包括均方测度、归一化相关测度以及互信息测度。方法:分析各配准要素的算法原理后,基于C??加以实现,提出使用综合配准误差来评价不同配准算法的性能,并与传统目标配准误差的评价结果作对比。结果:3种测度都能对近模态的图像实施准确的配准,其中互信息测度驱动的配准在配准精度和速度上表现更为稳定,综合配准误差仅为另外两个测度的一半左右。它的结论得出利用综合配准误差得到的评价结果更为客观,互信息测度是放

3

毕业设计(论文)

疗中实施配准的较理想测度。

在医学、生物、信息处理和其他很多高科技领域内图像配准技术越来越显示出它的重要性,将会越来越受到人们的关注。在现今的科技水平上,图像配准未来的发展趋势也会更好。

本文主要主要介绍了灰度相关的配准方法是从待拼接图像[3]的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。也可以通过FFT 变换将图像由时域变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的差值累计起来。这种办法效果不是很好,常常由于亮度、对比度的变化及其它原因导致拼接失败。另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高。该方法的拼接效果要好一些,成功率有所提高。根据所选择的模板的不同,基于灰度相关的配准方法可以分为:线匹配法、比值匹配法和块匹配法。

1.4 研究问题及内容

本文在分析了灰度相关的图像配准算法中的线匹配法、比值匹配法和块匹配法,利用这三种方法分别实现两幅图像在水平垂直位移上的配准,而本课题研究的内容是提出一种基于灰度相关的算法,不仅能实现两幅图在水平和垂直位移的配准,同时也能实现在绕光轴旋转情况下的图像配准。这里提出了一种方法,多尺度模块匹配法。在这三种匹配的环境下,它能实现水平垂直位移上的匹配、缩放以及旋转。同时通过在Matlab编程环境下编程实现相关算法,通过实际图像的配准试验,利用这些结论最终得到精确地配准结果。

4

毕业设计(论文)

第2章 图像配准基本理论

2.1 图像配准的基本介绍

2.1.1

图像配准的描述

图像配准是对取自不同时间,不同传感器或不同视角的同一场景的两幅图像或者多幅图像匹配的过程。图像配准广泛用于多模态图像分析,是医学图像处理的一个重要分支,也是遥感图像处理,目标识别,图像重建,机器人视觉等领域中的关键技术之一,也是图像融合中要预处理的问题,待融合图像之间往往存在偏移、旋转、比例等空间变换关系,图像配准就是将这些图像变换到同一坐标系下,以供融合使用。 2.1.2

图像配准的定义

对于二维图像配准可定义为两幅图像在空间和灰度上的映射[4],如果给定尺寸的二维矩阵F1和F2代表两幅图像,F1(X,Y)和F2(X,Y)分别表示相应位置则图像间的映射可表示为:F2(X,Y)?G(F1(H(X,Y))),式中(X,Y)上的灰度值,

H表示一个二维空间坐标变换,即(X',Y')?H(X,Y),且G是一维灰度变换。 2.1.3

图像配准的步骤

图像配准的基本过程可以分为三个步骤:第一步是为每一个图像信息模式各定义一个坐标系F(X,Y),然后再定义这些参考特征之间的失调或相似函数;第二步是分割出图像的参考特征,再定义这些参数特征之间的失调或相似函数;第三步是应用优化算法,使第二步中失调(相似)函数达到全局最小(最大)值,达到两幅图像的配准。其中参考特征和对应优化算法的选择是配准的核心,也是不同配准算法的差异所在。

2.2 图像配准的相关概念

2.2.1

配准基准

通常,图像配准中根据配准基准的特性,可分为基于外部基准的配准和基于内部基准的配准[5],外部基准是指强加于待配准对象的各种人造标记,这些标记必须在各种配准模式中都清晰可见且可准确检测到。内部基准是指由图像本身得到的位置相对固定且图像特征明晰的各种配准标识。

1

毕业设计(论文)

2.2.2 映射变换与配准区域

设f1和f2表示两幅待匹配的图像,I1(x)?I1(x,y)和I2(x')?I2(x',y')分别表示两幅图像的密度函数,其中x?(x,y)和x'?(x',y')分别表示在图像D1和D2中的像素坐标。图像匹配就是要找到一个把图像f1映射到图像f2的变换,使得变换后的图像I3(M(x))和I2(x')具有几何对应性。M(x)?(U(x,y),V(x,y))这种映射变换有刚体变换、仿射变换、投影变换以及曲线变换等。配准时的变换区域根据实际需要又分为局部配准和全局配准。局部变换一般很少直接使用,因为它会破坏图像的局部连续性,且变换的双映射性会影响图像的再采样。从近期关于图像配准方面的文章看,一般刚性和仿射多用于全局变换,而曲线变换多用于局部变换。 2.2.3

配准的交互性与优化

根据人的参与程序配准又可分为全自动式,交互式和半自动式三种。全自动式中使用者仅需给相应算法提供图像数据以及图像获取的一些可能信息;交互式中使用者必须亲自进行配准,软件仅给目前变换提供一个可视的或数字的感官印象以及初始变换的一个可能参数;半自动式中,交互式有两种方式:一种是使用者须初始化算法,如分割数据,另一种是指导算法,如拒绝或接受配准假设。

配准变换的参数可以是直接计算出的,也可以是搜索计算出的。直接计算的最优化方法一般已完全由实例决定,所能研究的工作也仅限于如何使用非常少的信息把此计算方法应用于实际。搜索计算的最优化方法大多都可以用待优化的变换参数的一个标准数学函数来表达配准实例,此函数力图使图像在某一变换时两幅图像可达到最大相似。这些函数通常在单模配准中能简单一些,因为此时图像的相似性更能容易直接定义。我们可以通过使用一个标准的、合适的最优化方法使相似函数达到最优。

目前应用比较广泛的方法有Powell的方法、Downhill Simplex方法、Brent的方法以及一系列一维搜索算法、Levenberg-Marquardt最优化算法、Newton-Raph son迭代算法、stochastic搜索算法、梯度下降法(gradient descent methods)、遗传算法(genetic methods)、模拟退火法(simulated annealing),粒子群算法(partice sworm),蚁群算法(ant),几何散列法(geometric hashing)。多分辨率(如金字塔)和多尺度方法可以加速最优化的收敛速度。许多实际应用中使用了不止一种最优化方法,一般是先使用一种粗糙但快速的算法,然后再接着使用一种准确但运算速度慢的算法。

2

毕业设计(论文)

2.2.4 图像成像模式与配准方法的分类

有单模式和多模式等,单模(monomodality)图像配准是指待配准的两幅图像是同一种成像设备获取的。多模(multimodality)图像配准[6]是指待配准的两幅图像来源于不同的成像设备。基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、最大互信息法和基于小波变换的图像配准法。 (1) 互相关法

对于同一物体由于各种图像获取条件的差异或物体自身发生的空间位置的改变而产生的单模图像配准问题常常应用互相关法。在互相关法中互相关值的大小反映了配准的效果。互相关法的思路是找出使各图像之间相关性最大的空间变换参数来实现图像的配准。该方法通过优化两幅图像间的相似性测度来估计空间变换参数(刚体的平移和旋转参数),采用的相似性测度可以是多种多样的,例如相关系数,差值的平方和及相关函数等。其中最经典的相似性测度是归一化的相关系数(correlation coefficient , CC), 即:

, (2.1)

式中,F为模板图像,F??fn?n?1,fn为图像F的灰度;G为与F有相同大小的目标图像G??gn?n?1,gn为图像G的灰度;f和g分别为图像F和G灰度的均方值。由于要对每种变换参数可能的取值都要计算一次相似性测度,互相关法的计算量比较庞大,因此近年来发展了快速搜索算法,例如,用相位相关傅立叶法估算平移和旋转参数;用遗传算法和模拟退火技术减少搜索时间和克服局部极值问题。

尤其注意的是互相关法受到不同模态成像特点的影响,例如同一物体在不同的模态图像中表现出纹理和密度的非线性差异,使相关性计算无意义,故互相关性法主要局限于单模图像配准[7]。对于条件不好或曲线不完全闭合的图像配准,

3

N?1N?1

毕业论文(图像匹配) 

毕业设计(论文)目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信息法、变换域法和基于特征法,其中基于特征法又可以根据所用的特征属性的不同而细分为若干类别。以下将根据这一分类原则来讨论目前已经报道的各种图像配准方法和原理。1.3研究现状国外从2
推荐度:
点击下载文档文档为doc格式
6jh5i14eze35m4y30v0d
领取福利

微信扫码领取福利

微信扫码分享