习题3
3.1选择题
(1) 有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度ω0转动,此时有一质量为m的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)
JJ?0 (B) ?022(J?m)RJ?mR(C)
J?0 (D) ?0 2mR[答案: (A)]
(2) 如题3.1(2)图所示,一光滑的内表面半径为10cm的半球形碗,以匀角速度ω绕其对称轴OC旋转,已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4cm,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s
(a) (b)
题3.1(2)图
[答案: (A)]
(3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度?在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A)动能不变,动量改变。 (B)动量不变,动能改变。 (C)角动量不变,动量不变。 (D)角动量改变,动量改变。 (E)角动量不变,动能、动量都改变。
[答案: (E)]
3.2填空题
(1) 半径为30cm的飞轮,从静止开始以0.5rad·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240?时的切向加速度aτ= ,法向加速度an= 。
[答案:0.15;1.256]
(2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒,原因是 。木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的 守恒。
题3.2(2)图
[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒]
(3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为JA和JB,则有JA JB 。
(填>、<或=)
[答案: <]
3.3刚体平动的特点是什么?平动时刚体上的质元是否可以作曲线运动?
解:刚体平动的特点是:在运动过程中,内部任意两质元间的连线在各个时刻的位置都和初始时刻的位置保持平行。平动时刚体上的质元可以作曲线运动。
3.4刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同?
解:刚体定轴转动的特点是:轴上所有各点都保持不动,轴外所有各点都在作圆周运动,且在同一时间间隔内转过的角度都一样;刚体上各质元的角量相同,而各质元的线量大小与质元到转轴的距离成正比。因此各质元的角速度相同,而线速度、向心加速度、切向加速度不一定相同。
3.5刚体的转动惯量与哪些因素有关?请举例说明。
解:刚体的转动惯量与刚体的质量、质量的分布、转轴的位置等有关。如对过圆心且与盘面垂直的轴的转动惯量而言,形状大小完全相同的木质圆盘和铁质圆盘中铁质的要大一些,质量相同的木质圆盘和木质圆环则是木质圆环的转动惯量要大。
3.6 刚体所受的合外力为零,其合力矩是否一定为零?相反,刚体受到的合力矩为零,其合外力是否一定为零?
解:刚体所受的合外力为零,其合力矩不一定为零;刚体受到的合力矩为零,其合外力不一定为零。
3.7 一质量为m的质点位于(x1,y1)处,速度为v?vxi?vyj, 质点受到一个沿x负方向的力f的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.
???解: 由题知,质点的位矢为 作用在质点上的力为 所以,质点对原点的角动量为 作用在质点上的力的力矩为
3.8 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为r1=8.75×10m 时的速率是v1=
10
5.46×10
4
m·s,它离太阳最远时的速率是v2=9.08×10m·s
-1
2
-1
r2是多
少?(太阳位于椭圆的一个焦点。)
解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有
r1mv1?r2mv2
r1v18.75?1010?5.46?10412∴ r2???5.26?10m 2v29.08?10????????13.9 物体质量为3kg,t=0时位于r?4im, v?i?6jm?s,如一恒力f?5jN作用在物体上,求
3秒后,(1)物体动量的变化;(2)相对z轴角动量的变化.
解: (1) ?p??fdt??05jdt?15jkg?m?s?1 (2)解(一) x?x0?v0xt?4?3?7 即 r1?4i,r2?7i?25.5j
??????即 v1?i1?6j,v2?i?11j ??∴ L1?r1?mv1?4i?3(i?6j)?72k ????∴ ?L?L2?L1?82.5kkg?m2?s?1
???????3???????解(二) ∵M?dz dt?t∴ ?L??0M?dt??0(r?F)dt
3.10 平板中央开一小孔,质量为m的小球用细线系住,细线穿过小孔后挂一质量为M1的重物.小球作匀速圆周运动,当半径为r0时重物达到平衡.今在M1的下方再挂一质量为M2的物体,如题3.10图.试问这时小球作匀速圆周运动的角速度??和半径r?为多少?
?t??题3.10图
解: 在只挂重物时M1,小球作圆周运动的向心力为M1g,即
M1g?mr0?02
①
挂上M2后,则有
(M1?M2)g?mr???2
②
重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 r0mv0?r?mv?
?r02?0?r?2??
③
联立①、②、③得
3.11 飞轮的质量m=60kg,半径R=0.25m,绕其水平中心轴O转动,转速为900rev·min.现利用
-1
一制动的闸杆,在闸杆的一端加一竖直方向的制动力F,可使飞轮减速.已知闸杆的尺寸如题3.11图所示,闸瓦与飞轮之间的摩擦系数?=0.4,飞轮的转动惯量可按匀质圆盘计算.试求: (1)设F=100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转? (2)如果在2s内飞轮转速减少一半,需加多大的力F?
解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N、N?是正压力,
Fr、Fr?是摩擦力,Fx和Fy是杆在A点转轴处所受支承力,R是轮的重力,
P是轮在O轴处所受支承力.
题3.11图(a) 题3.11图(b)
杆处于静止状态,所以对A点的合力矩应为零,设闸瓦厚度不计,则有 对飞轮,按转动定律有???FrR/I,式中负号表示?与角速度?方向相反. ∵ Fr??N N?N? ∴ Fr??N???l1?l2F l1又∵ I?mR2, ∴ ???①
以F?100N等代入上式,得
由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为
可知在这段时间里,飞轮转了53.1转.
12FrR?2?(l1?l2)?F ImRl1(2)?0?900?2?rad?s?1,要求飞轮转速在t?2s内减少一半,可知 60用上面式(1)所示的关系,可求出所需的制动力为
3.12 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO?转动.设大小圆柱体的半径分别为R和r,质量分别为M和m.绕在两柱体上的细绳分别与物体m1和m2相连,m1和m2则挂在圆柱体的两侧,如题3.12图所示.设R=0.20m, r=0.10m,m=4 kg,M=10 kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.
解: 设a1,a2和β分别为m1,m2和柱体的加速度及角加速度,方向如图(如图
b).
题3.12(a)图 题3.12(b)图
(1)
m1,m2和柱体的运动方程如下:
T2?m2g?m2a2 ① m1g?T1?m1a1 ②
??T1R?T2r?I? ③
式中 T1??T1,T2??T2,a2?r?,a1?R?
而 I?MR2?mr2 由上式求得 (2)由①式
1212
大学物理学第版修订版北京邮电大学出版社上册第三章习题答案



