f(u)?C1e2u?C2e?2u其中C1,C2为任意常数.
对应非齐次方程特解可求得为y*??1u. 41u. 411,C2??. 1616故非齐次方程通解为f(u)?C1e2u?C2e?2u?将初始条件f(0)?0,f'(0)?0代入,可得C1?所以f(u)的表达式为f(u)?18.(本题满分10分) 求幂级数
12u1?2u1e?e?u. 16164?(n?1)(n?3)xn?0?n的收敛域、和函数.
【详解】 由于liman?1?1,所以得到收敛半径R?1.
n??an当x??1时,级数的一般项不趋于零,是发散的,所以收敛域为??1,1?. 令和函数S(x)???(n?1)(n?3)xn?0?n,则
???n?2???n?1?S(x)??(n?4n?3)x??(n?2)(n?1)x??(n?1)x????x??\????x??'n?1n?1n?1?n?1??n?1?2nnn??x??x?3?x???\?'???3?1?x????1?x?(1?x)19.(本题满分10分)
设函数f(x),g(x)在区间?a.b?上连续,且f(x)单调增加,0?g(x)?1,证明: (1) 0?(2)
2
?bxag(t)dt?x?a,x??a,b?;
f(x)dx??f(x)g(x)dx.
ab?a??ag(t)dta【详解】
(1)证明:因为0?g(x)?1,所以即0??xa0dx??g(t)dt??1dtx??a,b?.
aaxx?xag(t)dt?x?a,x??a,b?.
(2)令F(x)?
?xaf(u)g(u)du??a??ag(t)dtxaf(u)du,
6
x?则可知F(a)?0,且F'(x)?f(x)g(x)?g(x)f?a??g(t)dt??,
a??因为0??xag(t)dt?x?a,且f(x)单调增加,
所以f??a???xag(t)dt???f(a?x?a)?f(x).从而
?x?F'(x)?f(x)g(x)?g(x)f?a??g(t)dt???f(x)g(x)?g(x)f(x)?0, x??a,b?
?a?也是F(x)在?a,b?单调增加,则F(b)?F(a)?0,即得到
b?a??ag(t)dtbaf(x)dx??af(x)g(x)dx.
20.(本题满分11分)
?设A??1?23?4??01?11??,E为三阶单位矩阵. ??1203??(1) 求方程组AX?0的一个基础解系; (2) 求满足AB?E的所有矩阵.
【详解】(1)对系数矩阵A进行初等行变换如下:
?1?23?4??1?23?4??1?A???01?11?????01?11????23?4??01?11?????1?0??1203????04?31????001?3????0得到方程组AX?0同解方程组
??x1??x4?x?2?2x4 ?x3?3x4???1?得到AX?0的一个基础解系??2??1???3?.
???1????x1y1z1?(2)显然B矩阵是一个4?3矩阵,设B??x2yz??22??xy?33z 3??x4y4z?4??对矩阵(AE)进行进行初等行变换如下:
7
001?10?2??,01?3??
?1?23?4?(AE)??01?11?1203??1?23?41???01?110?001?3?1?100??1?23?4100????010???01?11010???001???04?31?101?
00??100126?1????10???010?2?1?31????41???001?3?1?41?由方程组可得矩阵B对应的三列分别为
?x1??2???1??y1??6???1??z1???1???1????????????????????x2???1??2??y2???3??2??z2??1??2???c??c??c,,?x???1?1?3??y???4?2?3??z??1?3?3?, ?3??????3??????3??????1??y??0??1??z??0??1??x??0????4??????4??????4???即满足AB?E的所有矩阵为
?2?c1???1?2c1B???1?3c1??c1?其中c1,c2,c3为任意常数. 21.(本题满分11分)
6?c2?3?2c2?4?3c2c2?1?c3??1?2c3? ?1?3c3?c3???1??1证明n阶矩阵????1?1?1??0?01????1?1??0?02?与?相似. ????????????1?1??0?0n??1?1??0?01????1?1?0?02??,. B???????????????1?1??0?0n??1??1【详解】证明:设A? ????1?分别求两个矩阵的特征值和特征向量如下:
??1?E?A??1??1?1??1??1?1??(??n)?n?1,
??1????1所以A的n个特征值为?1?n,?2??3???n?0;
????而且A是实对称矩阵,所以一定可以对角化.且A~????
8
??0?;
???0????E?B?0?00??1?2??(??n)?n?1
???0???n所以B的n个特征值也为?1?n,?2??3???n?0;
对于n?1重特征值??0,由于矩阵(0E?B)??B的秩显然为1,所以矩阵B对应n?1重特征值??0的特征向量应该有n?1个线性无关,进一步矩阵B存在n个线性无关的特征向量,即矩阵B一定可以对
????角化,且B~??????0? ???0??1?1??0?01????1?1??0?02?与?相似. ????????????1?1??0?0n???1??1从而可知n阶矩阵????1?22.(本题满分11分)
设随机变量X的分布为P(X?1)?P(X?2)?1,在给定X?i的条件下,随机变量Y服从均匀分布2U(0,i),i?1,2.
(1) 求Y的分布函数; (2) 求期望E(Y). 【详解】(1)分布函数
F(y)?P(Y?y)?P(Y?y,X?1)?P(Y?y,X?2)?P(Y?y/X?1)P(X?1)?P(Y?y/X?2)P(X?2) ?当y?0时,F(y)?0;
1?P(Y?y/X?1)?P(Y?y/X?2)?2当0?y?1时,F(y)?11y3y??y; 2224当1?y?2时,F(y)?11y11??y?; 22242当y?2时,F(y)?1. 所以分布函数为
9
,y?0?0?3?y,0?y?1?4F(y)??
?1?y,1?y?2?24?1,y?2??3?4,0?y?1??1(2)概率密度函数为f(y)?F'(y)??,1?y?2,
?4?,?0其它?E(Y)??2y33ydy??dy?. 04144123.(本题满分11分)
设随机变量X,Y的概率分布相同,X的概率分布为P(X?0)?12,P(X?1)?,且X,Y的相关系数33?XY?1. 2(1) 求二维随机变量(X,Y)的联合概率分布; (2) 求概率P(X?Y?1).
[详解]由于X,Y的概率分布相同,故P(X?0)?1212,P(X?1)?,P(Y?0)?,P(Y?1)?, 3333显然EX?EY?22,DX?DY? 39相关系数?XY?1COV(X,Y)E(XY)?EXEY???2DXDYDXDYE?XY??2949,
所以E(XY)?5. 95,从而得到(X,Y)的联合概率分布: 9而E(XY)?1?1?P(X?1,Y?1),所以P(X?1,Y?1)? 10
P(X?1,Y?1)?5112,P(X?0,Y?1)?,P(X?1,Y?0)?,P(X?0,Y?0)? 99994. 9(2)P(X?Y?1)?1?P(X?Y?1)?1?P(X?1,Y?1)? 11