一、选择填空
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 二、判断正误
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 三、将下列问题化为标准型
MaxZ?2x1?x2?3x3?x4?x1?x2?x3?x4?71. ?s..t?2x1?3x2?5x3??8?x,x?0,x?0,x符号不限24?13''[解] 令x2??x2,x4?x4?x5,在约束1中引入非负的松弛变量x6,约束2两边
同乘以-1。整理得:
''MaxZ?2x1?x2?3x3?(x4?x5)''?x1?x2?x3?(x4?x5)?x6?7 ?'s..t??2x1?3(?x2)?5x3?8?x,x',x,x',x,x?0?123456
即:
MaxZ?2x1?x2?3x3?x4?x5?x1?x2?x3?x4?x5?x6?7?s..t??2x1?3x2?5x3?8?x,x,x,x,x,x?0?123456
2. Min Z=-x1+5x2-2x3
x1 +x2 - x3 ≤ 6
x1 + x2 = 10
x1 ≥ 0, x2 ≤ 0, x3符号不限
[解] 首先,令对变量x3进行处理,令x3 = x’3- x4;再令x’2 = - x2。然后对目标函数和约束条件进行标准化。 Max Z=x1+5x2+2x3-2x4
x1 - x2 - x3+x4+x5 = 6
s.t. 2x1 - x2 +3x3 ≥ 5
x1 - x2 = 10 x1, x2, x3, x4, x5, x6≥ 0
四、用图解法求解下列线性规
s.t. 2x1 + x2 +3x3 - 3x4 -x6 = 5
1. min Z= - x1+2x2
x1 - x2 ≥ -2
s.t. x1 +2x2 ≤ 6
x1, x2 ≥ 0
[解] 画图如下: x2
6 5 x1 - x2 ≥ -2
4 3
2 x1 +2x2 ≤ 6 1 E
-2 -1 0 1 2 3 4 5 6 7 8 x1
根据上图,最优解为X*=(x1, x2)T =(6, 0)T,最优值为-6。
2.Max Z= - x1+2x2
x1 - x2 ≥ -2
s.t. x1 +2x2 ≤ 6
x1, x2 ≥ 0 [解] 画图如下: x2
6 5 x1 - x2 ≥ -2
4 3
2 x1 +2x2 ≤ 6 1 E
-2 -1 0 1 2 3 4 5 6 7 8 x1
2814根据上图,最优解为X*?(x1,x2)T?(,)T,最优值为。
333
五、用单纯形法求解下列线性规划 1. Max Z=3x1+5x2
x1 ≤ 4
3x1 +2x2 ≤18
x1, x2≥ 0
[解] 首先,标准化后线性规划如下: (1)Max Z=3x1+5x2+0x3+0x4+0x5
x1 + x3 = 4
s.t. 2x2 ≤ 12
s.t. 3x1 +2x2 + x5 = 18
x1, x2, x3, x4, x5, x6≥ 0 再用表格单纯形法求解如下:
(一、按照第一个正检验数对应非基变量进基的方法) cj 3 5 0 0 0 CB XB b xj x1 x2 x3 x4 x5 0 x3 4 1 0 1 0 0 0 x4 12 0 2 0 1 0 0 x5 18 3 2 0 0 1 -Z 0 3 5 0 0 0 3 x1 4 1 0 1 0 0 0 x4 12 0 2 0 1 0 0 x5 6 0 2 -3 0 1 -Z -12 0 5 -3 0 0 3 x1 4 1 0 1 0 0 0 x4 6 0 0 3 1 -1 5 x2 3 0 1 -3/2 0 1/2 -Z -27 0 0 9/2 0 -5/2 3 x1 2 1 0 0 -1/3 1/3 0 x3 2 0 0 1 1/3 -1/3 5 x2 6 0 1 0 1/2 0 -Z -36 0 0 0 -3/2 -1 (二、按照最大正检验数对应非基变量进基的方法) cj 3 5 0 0 0 CB XB b xj x1 x2 x3 x4 x5 0 x3 4 1 0 1 0 0 0 x4 12 0 2 0 1 0 0 x5 18 3 2 0 0 1 -Z 0 3 5 0 0 0 2x2 + x4 = 12
θj 4/1 18/3 12/2 6/2 4/1 6/3 θj 12/2 18/2 4 1 0 1 0 0 6 0 1 0 1/2 0 6 3 0 0 -1 1 -Z -12 3 0 0 -5/2 0 0 x3 2 0 0 1 1/3 -1/3 5 x2 6 0 1 0 1/2 0 3 x1 2 1 0 0 -1/3 1/3 -Z -36 0 0 -3 -3/2 -1 因此,最优解为X* =(2, 6, 2, 0, 0)T,最优值为Zmax=36。
2. Max Z=2x1- x2+x3
3x1+x2+x3 ≤ 60
0 5 0 x3 x2 x5 4/1 6/3 s.t. x1 +x2-x3 ≤ 20
x1, x2, x3 ≥ 0
[解] 首先,标准化后线性规划如下: (1)Max Z=2x1-x2+x3
3x1+x2+x3+x4 = 60 x1 +x2-x3 +x6 = 20
x1, x2, x3, x4, x5, x6≥ 0 再用表格单纯形法求解如下: cj 2 -1 1 0 0 0 CB XB b xj x1 x2 x3 x4 x5 x6 0 x4 60 3 1 1 1 0 0 0 x5 10 1 -1 2 0 1 0 0 x6 20 1 1 -1 0 0 1 -Z 0 2 -1 1 0 0 0 0 x4 30 0 4 -5 1 -3 0 2 x1 10 1 -1 2 0 1 0 0 x6 10 0 2 -3 0 -1 1 -Z -20 0 1 -3 0 -2 0 0 x4 10 0 0 1 1 -1 -2 2 x1 15 1 0 1/2 0 1/2 1/2 -1 x2 5 0 1 -3/2 0 -1/2 1/2 -Z -25 0 0 -3/2 0 -3/2 -1/2 因此,最优解为X* =(15, 5, 0, 10, 0, 0)T,最优值为Zmax=25。
六、表格单纯形法计算题
1. (2)初始线性规划模型如下:
x1-x2+2x3 ≤ 10
s.t. x1-x2+2x3+x5 = 10
θj 60/3 10/1 20/1 30/4 10/2 Max Z=5x1+20x2+25x3
2x1+x2 ≤ 40
3x1 -1/2x3 ≤ 15
x1, x2, x3 ≥ 0
(3)用单纯形法求出最优解及相应的最优值。 [解](按照最大检验数对应非基变量进基的方法) cj 5 20 25 0 0 0 CB XB b xj x1 x2 x3 x4 x5 x6 0 x4 40 2 1 0 1 0 0 0 x5 30 0 2 1 0 1 0 0 x6 15 3 0 -1/2 0 0 1 -Z 0 5 20 25 0 0 0 0 x4 40 2 1 0 1 0 0 25 x3 30 0 2 1 0 1 0 0 x6 30 3 1 0 0 1/2 1 -Z -750 5 -30 0 0 -25 0 0 x4 20 0 1/3 0 1 -1/3 -2/3 25 x3 30 0 2 1 0 1 0 5 x1 10 1 1/3 0 0 1/6 1/3 -Z -800 0 -95/3 0 0 -155/6 -5/3
七、用大M法和两阶段法求解下列线性规划
s.t. 2x2+x3 ≤ 30
θj 30/1 40/2 30/3 1. min Z= x1+2x2
-x1 +2x2 ≥ 2
s.t. x1 ≤ 3
x1, x2 ≥ 0
[解] 标准化并引入人工变量x5后,线性规划模型如下:
Max Z’=-x1-2x2-Mx5
-x1+2x2 -x3 +x5 = 2
s.t. x1 +x4 = 3
x1, x2, x3, x4, x5 ≥ 0
用大M法求解如下: cj -1 -2 0 0 -M CB XB θj b xj x1 x2 x3 x4 x5 -M x5 2 -1 2 -1 0 1 2/2 0 x4 3 1 0 0 1 0 -Z’ 2M -1-M -2+M -M 0 0 -2 x2 1 -1/2 1 -1/2 0 1/2