(1)离子须标明电荷数; (2)相同的原子可以合并写,相同的离子要单个写; (3)阴离子要用方括号括起; (4)不能把“→”写成“=”; (5)用箭头标明电子转移方向(也可不标)。
二.共价键
1.共价键:原子间通过共用电子对所形成的相互作用叫做共价键。 用电子式表示HCl的形成过程:
注:(1)成键微粒: 原子 (2)成键实质: 静电作用 (3)成键原因: 共用电子对
(4)形成规律: 非金属元素形成的单质或化合物形成共价键 2.共价化合物:以共用电子对形成分子的化合物叫做共价化合物。 化合物 离子化合物
共价化合物 化合物中不是离子化合物就是共价化合物 3.共价键的存在:
非金属单质:H2、X2 、N2等(稀有气体除外) 共价化合物:H2O、 CO2 、SiO2、 H2S等 复杂离子化合物:强碱、铵盐、含氧酸盐 4.共价键的分类:
非极性键:在同种元素的原子间形成的共价键为非极性键。共用电子对不发生偏移。 ..极性键:在不同种元素的原子间形成的共价键为极性键。共用电子对偏向吸引能力强的一方。 ..三.电子式:
定义:在元素符号周围用小黑点(或×)来表示原子的最外层电子(价电子)的式子叫电子式。 原子的电子式:
2.阴阳离子的电子式:
(1)阳离子 简单阳离子:离子符号即为电子式,如Na+、Mg2等
、
+
复杂阳离子:如NH4+ 电子式:
(2)阴离子 简单阴离子:
复杂阴离子:
、
3.物质的电子式:
离子的电子式:阳离子的电子式一般用它的离子符号表示;在阴离子或原子团外加方括弧,并在方括弧的右上角标出离子所带电荷的电性和电量。
第6页 共15页
分子或共价化合物电子式,正确标出共用电子对数目。
离子化合价电子式,阳离子的外层电子不再标出,只在元素符号右上角标出正电荷,而阴离子则要标出外层电子,
并加上方括号,在右上
角标出负电荷。阴离子电荷总数与阳离子
4.用电子式表示形成过程:
用电子式表示单质分子或共价化合物的形成过程
用电子式表示离子化合物的形成过程
四、分子间作用力和氢键 1、分子间作用力
⑴定义:把分子聚集在一起的作用力,又称范德华力。 ⑵特点:①分子间作用力比化学键弱得多; ②影响物质的熔点、沸点、溶解性等物理性质;
③只存在于由共价键形成的多数共价化合物和绝大多数气态非金属单质分子,及稀有气体分子之间。但像二氧化硅、金刚石等由共价键形成的物质的微粒之间不存在分子间作用力。
⑶变化规律:一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点也越高。例如,熔沸点:I2>Br2>Cl2>F2。
第7页 共15页
2、氢键
⑴定义:分子间存在着一种比分子间作用力稍强的相互作用。 ⑵形成条件:除H原子外,形成氢键的原子通常是N、O、F。 ⑶存在作用:氢键存在广泛,如H2O、NH3、HF等。
分子间氢键会使物质的熔点和沸点升高。
五、化学反应的实质:
一个化学反应的过程,本质上就是旧化学键的断裂和新化学键的形成过程。 离子键、共价键与离子化合物、共价化合物的关系 提高篇:一、化学键与物质类别关系规律
1、只含非极性键的物质:同种非金属元素构成的单质,如:I2、N2、P4、金刚石、晶体硅等。 2、只含有极性键的物质:一般是不同非金属元素构成的共价化合物、如:HCl、NH3、SiO2、CS2等。 3、既有极性键又有非极性键的物质:如:H2O2、C2H2、CH3CH3、C6H6等。
4、只含有离子键的物质:活泼非金属与活泼金属元素形成的化合物,如:Na2S、NaH、K2O、CsCl等。 5、既有离子键又有非极性键的物质。如:Na2O2、Na2S2、CaC2等。 6、既有离子键又有极性键的物质,如NaOH等。
7、由离子键、共价键、配位键构成的物质,如:NH4Cl等。 8、由强极性键构成但又不是强电解质的物质。如HF等。 9、无化学键的物质:稀有气体。
10、离子化合物中并不存在单个的分子,例如:NaCl,并不存在NaCl分子。
第二章 化学反应与能量
第一节 化学能与热能
知识点一 化学键与化学反应中能量变化的关系 1. 感知化学变化与能量变化的关系
我们在生活中利用煤、液化石油气、煤气、天然气等燃料燃烧放出的热能烧水、做饭或取暖,实验室中加热高锰酸钾或氯酸钾制取氧气。工业上高温煅烧石灰石制取生石灰,这些实例足以说明物质在发生化学变化的同时还伴随着能量的变化。
2. 化学键与化学反应中能量变化的关系
物质发生化学变化的实质是旧化学键的断裂和新化学键的形成的过程,化学键是使原子或原子相互结合的作用力。 归纳总结:(1)各种物质都储存有化学能。
(1) 在物质发生化学反应的过程中,破坏旧化学键,需要吸收一定的能量来克服原子(或离子)间的相互作用;
第8页 共15页
形成新化学键时,又要释放一定的能量。因此,在化学反应中,不仅有新物质的生出,而且还伴随着能量的变化。
(2) 任何化学反应都要经历旧化学键断裂和新化学键形成的过程,因此,任何化学反应都伴随着能量的变化。
化学键的断裂和形成是化学反应中能量变化的主要原因。
(3) 在一个完整的化学反应过程中,究竟是放出能量还是吸收能量,要看破坏旧化学键吸收能量总和与形成新
化学键放出能量总和的大小。若破坏旧化学键吸收能量总和大于形成新化学键放出能来那个综合,整个化学反应过程就吸收能量。若破坏旧化学键吸收能量总和小于形成新化学键放出能量总和,整个化学反应过程就放出能量。
知识点二 化学能与热能的相互转化 1. 质量守恒和能量守恒定律
(1) 质量守恒定律:自然界的物质可以发生转化,但是总质量保持不便。 (2) 能量守恒定律:一种能量可以转化为另一种能量,但是总能量保持不变。 2. 放热反应和吸热反应
放出热能的化学反应叫做放热反应,吸收热能的化学反应叫做吸热反应。
归纳总结:每一个化学反应都伴随着能量的变化,有的释放能量,有的吸收能量。从能量类型方面来看,有的反应是放热反应,有的反应是吸热反应。酸碱中和反应是放热反应;燃烧反应是放热反应;活泼金属跟水或酸的反应是放热反应。
下列反应都是吸热反应:
3. 认识物质的化学变化与能量变化的关系的意义
(1) 化学反应伴随着能量变化是化学反应中客观存在的一大特征,认识了物质的化学变化与能量变化关系,就
是更加全面的认识了物质的化学变化,就能更好的利用物质的化学变化。
(2) 利用化学能转化为热能的原理来获取人类所需要的热量进行生活、生产和科学研究,如燃料的燃烧、炸药
开山、发射火箭等等
(3) 利用热能使很多化学反应得以发生,从而探索物质的组成、性质或制备所需要的物质,如高温冶炼金属、
分解化合物等等。
总之,化学物质中的化学能通过化学反应转化成热能,是物质生存和发展的动力之源,而热能转化为化学能又是人们进行化学科学研究、创造新物质不可或缺的条件和途径。
第二节 化学能与电能
一次能源:直接从自然界取得的能源。例:水能,风能,煤,石油,天然气,铀,太阳能等 二次能源:一次能源经过加工、转换得到的能源。例:电力,蒸汽等。 知识点一
第9页 共15页
一.
化学能与电能的相互转化(火力发电)
化学能转化成热能,热能转化成机械能,机械能转化成电能。 燃烧(氧化还原反应)是使化学能转换成电能的关键。 二.
原电池
1. 原电池工作原理:原电池实质是氧化还原反应。 2. 组成原电池的条件
(1) 有两种活动性不同的金属(或一种是非金属导体)做电极 (2) 电极材料均插入电解质溶液中 (3) 两极相连形成闭合回路 (4) 能自发形成氧化还原反应
3. 原电池的正、负极判断的方法主要有两种
(1) 当两种金属做电极时,活动性强的金属做负极,活动性相对弱的做正极。当两极一种是金属,另一种是非
金属时,金属极为负极,非金属极为正极。金属活动性顺序:K、Ca、Na、Mg、Al、Zn 、Fe、Sn、 Pb (H)Cu、 Hg 、Ag、 Pt 、Au
(2) 根据电流方向或电子流向
电流(外电路)由正极流向负极;电子则由负极经内电路流向正极。 (3) 依据原电池中的反应方向
正极:得电子,发生还原反应,现象是伴随金属的析出或氢气的放出。 负极:失电子,发生氧化反应,现象是电极本身的消耗,质量的减少。 4. 原电池电极反应书写方法
(1) 写出原电池反应(氧化还原反应)方程式
(2) 将原电池反应方程式分成氧化反应和还原反应。一般还原剂本身做负极,负极发生的反应是氧化反应。正
极反应为还原反应,因此原电池反应中的氧化剂在正极得电子,发生还原反应。
5. 原电池原理的应用
(1) 加快氧化还原反应的速度,因为形成原电池后,氧化反应和还原反应分别在两极进行,使溶液中的离子运
动时相互的干扰减小,使反应速率增大
(2) 比较金属活动性的强弱,例如,有两金属A、B,用导线相连后移入稀硫酸中,能溶解的金属活泼性较强,
表面出现较多气泡的金属活动性较弱。
6. 原电池设计
首先要确定一个自发的氧化还原反应,只有自发的氧化还原反应才能设计成原电池。
其次,将自发的氧化还原反应拆分成氧化反应和还原反应两个半反应,分别为负极和正极的电极反应式。
第10页 共15页