好文档 - 专业文书写作范文服务资料分享网站

2010年概率论与数理统计试卷及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

_______号班学教 装 名 姓 _ _ __ _ _ _ _ _ _ __ _ _ _号 订学 课 选 _ _ _ __ _ _ _ _ _ _ __ _ 业 专 _ _ _ ____ 线________ )系(院学

5. 随机变量(X,Y)的分布如下,写出其边缘分布.

2010~ 2011学年度第二学期

《概率论与数理统计》试卷A评分标准及答案

X Y 0 1 2 3 P?j

6课程代码:1590056 试卷编号: 命题日期: 2011 年 4 月 10 日

1 0 33 8 8 0 8 答题时限: 90 分钟 考试形式:闭卷笔试

3 18 0 0 128 8 得分统计表: 题号

331总分 一 二 三 P1i? 8 8 8 8

100 18 12 70 6.设(X1,X2,…Xn)为来自总体X的样本,E(X)=μ,D(X)=σ2,

??11?2X11?2X2 一、 填空题(每题3分,共18分)

? ?1112?3X1?6X2?2X3

?111得分 18 ?3?3X1?3X2?3X3

μ的无偏估计量是 ????1,?2 ,哪个更有效 ?1 。

1.设事件A与B互不相容, 且P(A)?113,P(B)?4, 则P(AB)= 1/3 .

二、 选择题(每题2分,共12分)

2.设随机变量X的数学期望E(X)??, 方差D(X)??2, 则由切比雪夫不等

式, 有P{|X??|?2?}? 3/4 .

得分 12 3. 在总体X~N(30,22

)中随机地抽取一个容量为16的样本,则样本均值X在1. 设X为今年任一时刻天津的气温,Y为今年任一时刻北京的气温,则今29到31之间取值的概率= 0.9544 . (?(2)?0.9772) 年天津的气温变化比北京的大,相当于 A .

4. 设一个工人生产了四个零件,Ai表示事件“他生产的第i个零件是正

A、D(X)?D(Y) B、E(X)?E(Y) C、P{X?Y} D、X?Y 品”(i?1,2,3,4),用A1,A2,A3,A4的运算关系表达事件:至少有一个产2. 设总体X~N(?,?2), 其中?与?2都是未知参数, ???????,??0,

品是次品B2?A1?A2?A3?A4?A1A2A3A4

(X1,X2,,Xn)是从总体X中抽取的一个样本, 则参数?的置信度为1??的置

信区间为 C .

试卷编号: 第 1 页 共 3页

_______号班学教 装 名 姓 _ _ __ _ _ _ _ _ _ __ _ _ _号 订学 课 选 _ _ _ __ _ _ _ _ _ _ __ _ 业 专 _ _ _ ____ 线________ )系(院学

1.某种诊断癌症的实验有如下效果:患有癌症者做此实验反映为阳性的概率为A、 ??X??Z???n?,X?Z?? B、

?X?SZ,XS??2n2??n??Z??

2n2?0.95,不患有癌症者做此实验反映为阳性的概率为0.05,并假定就诊者中有C、??X?S?0.005的人患有癌症。

?ntX?Snt??(n?1),?(n?1)? D、 ?X?St(n),X?St(n)?22??n??? 2n2?1)任选做实验的人,其实验结果反应为阳性的概率是多少?

3. 设K在[-3,5]上服从均匀分布,事件B为“方程x2-2Kx—K=0有实根”,2)已知某人做此实验反应为阳性,问他是一个癌症患者的概率是多少? 则P(B)= C

解:设A“癌症患者”,B“反应阳性”. ....................(1分) A、 1/2 B、 3/4 C、 7/8 D、 1

则P(BA)?0.95,P(BA)?0.05,P(A)?0.005 ..............(1分)

4.设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)

1)由全概率公式:

和N(1,1),则下列结论正确的是 B

P(B)?P(BA?BA)?P(A)P(BA)?P(A)P(BA)

=0.005*0.95+0.995*0.05=0.00475+0.04975=0.0545 ...(4分)

A、 P?X?Y?0??1/2 B 、 P?X?Y?1??1/2 2)由贝叶斯公式:

C、 P?X?Y?0??1/2 D 、 P?X?Y?1??1/2 P(AB)?P(AB)P(B)?0.004750.0545?0.087 .......................(4分) 5.在对总体参数的假设检验中,若给定显著性水平为?,则犯第一类错误的

概率是 B 。 ?Ax0?x?1A、1??

B、?

C、

?的概率密度为

f(x)????2?x,1?x?2

2 D、不能确定

2.设随机变量X???0,其它6.已知随机变量X服从二项分布,且E(X)?2.4,D(X)?1.44,则二项分布

求:1)A;2)X的分布函数F(x);3)P(-1

的参数n,p的值为 D . 解: 1)A=1..........................................(3分)

A、n?5,P?0.2 B、n?6,p?0.2 ?0,x?0??x2C、n?5,p?0.4 D、n?6,p?0.4 2)F(x)???2,0?x?12 .................(4分)

??x??2x?1,1?x?2?2三、 计算题(共70分)

?1,x?23)P(-1

得分 70

试卷编号: 第 2 页 共 3页

_______号班学教 装 名 姓 _ _ __ _ _ _ _ _ _ __ _ _ _号 订学 课 选 _ _ _ __ _ _ _ _ _ _ __ _ 业 专 _ _ _ ____ 线________ )系(院学3.设随机变量(X,Y)在区域D??(x,y)0?y?x?1?内服从均匀分布. 求:1)X,Y的联合概率密度函数;2)X,Y的边缘概率密度函数;

3)X,Y是否独立,为什么?

解:1)f(x,y)???2,0?y?x?1???0,其他....................(3分)

?x2)

f)????2dy,0?x?1??2x,0?x?1X(x?0???................(2

分)

???0,其他?0,其他?12dx,0?y?1f(y)???2(1?y),0?y?1Y???y???..............(2

分)???0,其他??0,其他3)?fX(x)fY(y)?f(x,y),?X与Y不独立。.............(3分)

4.设随机变量(X,Y)的联合分布率如下,求?XY.

Y

X 0 1 2 0 1219 9 9 1 22 9 9 0 2 19 0 0

试卷编号:

5.在每次试验中,事件A发生的概率为0.5,利用切比雪夫不等式估计,在1000次独立试验中,事件A发生的次数在450至550次之间的概率. 解:设X表示1000次独立试验中事件A发生的次数,

则E(X)?500,D(X)?250,

P{450?X?550}?P{|X?500|?50}

?P{|X?E(X)|?50}?1?D(X)502?1?2502500?0.9

6.X1,X2,,Xn为总体X的一个样本, X的概率密度为

?(??1)x?f(x,?)??,0?x?1,?0,其他,???1.

(1)用矩方法估计未知参数?;

(2)用极大似然估计法估计未知参数?. 1解:(1)因

E(X)??x(??1)x?dx??1(???1???1??21??100?1)xdx??2x|0???2

......................(2分)

令E(X)?X .................................(2分)

????2X?11?X为?的矩估计......................(1分) 2)似然函数

L(x1,x2,xn;?)?(??1)n(x1x2xn)?(,

0?xi?1,i?1,2,,n

........................................(2分)

n?lnL?nln(??1)???lnXii?1,.....................(1分)

dlnLn?n由d???1??lnXi?0i?1......................(1分)

第 3 页 共 3页

_______号班学教 装 名 姓 _ _ __ _ _ _ _ _ _ __ _ _ _号 订学 课 选 _ _ _ __ _ _ _ _ _ _ __ _ 业 专 _ _ _ ____ 线________ )系(院学

????(1?nn)X得,?的极大似量估计量为

?lnii?1.....(1分)

7.某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算

得平均成绩为66.5分,标准差为10分。问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程。

t0.05(35)=1.6896 t0.05(36)=1.6883 t0.025(35)=2.0301 t0.025(36)=2.0281 Z0.05=1.645 Z0.025=1.96 解:n?36,x??66.5,s?10,??0.05,?0?70

设 H0:???0,H1:???0 ..............(2分)

(为σ2未知的μ的双边假设检验)

x??H 构造统计量:T??00下sn?t(n?1) ..............(2分)

拒绝域 W???T?t??(n?1)? ..............(2分)

?2? 整理数据:t0.025(35)=2.0301,T=-2.1

因为:2.1>2.0301 T?W ..............(2分)

所以:拒绝H0,

不可以认为这次考试全体考生的平均成绩为70分。...(2分)

试卷编号: 第 4 页 共 3页

2010年概率论与数理统计试卷及答案

_______号班学教装名姓_______________号订学课选______________业专_______线________)系(院学5.随机变量(X,Y)的分布如下,写出其边缘分布.2010
推荐度:
点击下载文档文档为doc格式
6idie47th84ddq3430jm4g4gh0kze500ye6
领取福利

微信扫码领取福利

微信扫码分享