好文档 - 专业文书写作范文服务资料分享网站

生物统计学教案(2)

天下 分享 时间: 加入收藏 我要投稿 点赞

百度文库 - 让每个人平等地提升自我

生物统计学教案

第二章 概率和概率分布

教学时间:2学时 教学方法:课堂板书讲授

教学目的:重点掌握离散型概率分布和连续型概率分布,掌握概率、总体特征数的

定义和一般运算,了解概率分布与频率分布的关系

讲授难点:离散型概率分布和连续型概率分布

概率的基本概念(45分钟) 问题的提出

从同一总体中抽取样本,各次所得到的样本不会完全相同。用不同样本去推断同一总体将得出不同的结论。这些结论不可能都是正确的。用某个样本去推断总体时,错误的可能性有多大?置信度有多高?这是对总体推断时所必须回答的问题。为回答这个问题,就要对总体分布有所了解。总体分布是建立在概率这一概念基础之上的。

自然现象,一般可分为确定性现象和非确定性现象。非确定性现象或称为随机现象。随机现象不存在简单的因果关系。支配这些现象出现的因素很多,各因素所起的作用不一样,作用的程度也不一样,很难遇到两个不同个体接受相同的配合方式,因此从每一个个体所观察到的结果都 不一样。

研究偶然现象本身规律性的科学称为概率论。基于实际观测结果,利用概率论得出的规律,揭示偶然性中所寄寓的必然性的科学就是统计学。 事件及事件间的关系(自已复习) 概率的统计定义(重点)

设某随机试验共进行k次,成功了(事件A)l次,则称l/k是k次随机试验中成功的频率。我们会发现,随着k的增大,频率l/k将围绕某一确定的常数p做平均幅度越来越小的变动,最终稳定于p,p即为事件A的概率。

18

百度文库 - 让每个人平等地提升自我

表2-1 不同样本含量的抽样试验

k=20 k=200 k=2000 抽样号 l l/k l l/k l l/k 1 1 32 403 2 4 31 414 3 1 38 409 4 4 49 382 5 5 40 416 6 7 37 413 7 6 40 388 8 2 29 423 9 4 47 410 10 4 53 395 本例的l/k最后似乎稳定在处,称为事件A的概率,记为: P(A)=

它的含义是随机试验中的每一个个体成功的可能性为。概率的概念是,事件在试验结果中出现可能性大小的定量计量。概率有以下性质

(1)任何事件(A)的概率均满足 0≤P(A)≤1 (2)必然事件(W)的概率为1 P(W)=1 (3)不可能事件(V)的概率为0 P(V)=0 概率的古典定义

条件:1、随机试验的全部可能的结果(基本事件数)是有限的。 2、各基本事件间是互不相容且等可能的。 定义: P(A)=m / n

其中,m为事件A中所包含的基本事件数,n为基本事件总数。

缺点:在没给出概率的定义之前已经利用了概率的概念。 概率的一般运算(重点)

1.加法法则:

P(A∪B)= P(A)+ P(B)- P(A∩B)

19

百度文库 - 让每个人平等地提升自我

若A、B为互不相容事件,则

P(A∪B)= P(A)+ P(B) 若有限个事件两两互不相容,则

P(A1∪A2∪…∪An)= P(A1)+ P(A2)+…+ P(An) 事件A与事件A的概率存在以下关系 P(A)= 1- P(A) 2.条件概率:

在已知事件B发生的条件下,事件A发生的概率,称为事件A发生的条件概率,记为

P(A∣B)。相对于条件概率,把没有附加条件的概率称为无条件概率。(例) P(A∣B)= P(AB)∕ P(B)

3.概率乘法法则: 两事件交的概率,等于其中一事件(其概率必须不为0)的概率乘以另一事件在已知前一事件发生条件下的条件概率。 P(AB)= P(B)P(A∣B) 或 P(AB)= P(A)P(B∣A)

4.独立事件:若事件A的发生并不影响事件B发生的概率,即 P(B∣A)= P(B)或P(A∣B)= P(A) 则称A和B为相互独立事件。

对于独立事件,概率乘法公式为

P(AB)= P(A)P(B)

5.贝叶斯定理:认事件B且只能与A1,A2, ……,Ak之一同时发生,那么,在事件B已发生的条件下,Ai发生的概率

p(Ai|B)?p(Ai)p(B|Ai)?p(A)p(B|A)jjj?1k

举例(例)

概率分布(25分钟)

20

百度文库 - 让每个人平等地提升自我

随机变量

随机变量:随机试验中被测定的量,常以大写的拉丁字母表示。 观测值:随机变量所取得的值,常以带下标的小写字母表示。 离散型随机变量:随机变量可能取得的值为有限个或可数无穷

个孤立的数值。

连续型随机变量:随机变量可能取得的值为某一区间内的任何数值。 离散型概率分布(重点)

概率函数:将随机变量X所取得值x的概率P(X=x)写成x的函数p(x),这样的函数称为随机变量X的概率函数

p(x) = P(X=x) 概率函数应满足:

p(x)?0?p(x)?1x概率分布:将X的一切可能值x1,x2,…,xn,…,以及取得这些值的概率p(x1),p(x2)…,p(xn),…,排列起来,即构成离散型随机变量的概率分布。可用概率分布表和概率分布图表示

图2-1 离散型随机变量概率分布图

分布函数:随机变量小于等于某一可能值(x0)的概率,记为F(x0)

F?x0??xi?x0?p(xi)?P?X?x0?

21

百度文库 - 让每个人平等地提升自我

连续型概率分布(重点)

密度函数:随机变量X的值落在区间(x,x +Δx)内的概率为P(x

P(x?X?x??x)f(x)?lim?x?0?x分布曲线:概率密度的图形y = f (x),称为分布曲线。

图2-2 连续型分布曲线

概率P(a

P?a?X?b??F?Fbaf(x)dxF????1?x0??P?X?x0???x0??f?x?dx,?????0,分布函数:随机变量取得小于x0的值的概率,记为F(x0) 对于任意两点a和b

P?a?X?b??F?b??F?a? 概率分布与 频率分布的关系

22

生物统计学教案(2)

百度文库-让每个人平等地提升自我生物统计学教案第二章概率和概率分布教学时间:2学时教学方法:课堂板书讲授教学目的:重点掌握离散型概率分布和连续型概率分布,掌握概率、总体特征数的定义和一般运算,了解概率分布与频率分布的关系讲授难点:离散型概率分布和连续型概率分布<
推荐度:
点击下载文档文档为doc格式
6i3zf124sz1emx02sb8q8qp2012ift011cf
领取福利

微信扫码领取福利

微信扫码分享