SPSS软件进行主成分分
析的应用例子
集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]
SPSS软件进行主成分分析的应用例子
2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下:
表2 2002年16家上市公司4项指标的数据 公司 歌华有线 五粮液? 用友软件 太太药业 浙江阳光 烟台万华 方正科技 红河光明 贵州茅台 中铁二局 红星发展 伊利股份 青岛海尔 湖北宜化 雅戈尔? 福建南纸 销售净利率(X1) 43.31 17.11 21.11 29.55 11.00 17.63 2.73 29.11 20.29 3.99 22.65 4.43 5.40 7.06 19.82 7.26 资产净利率(X2) 7.39 12.13 6.03 8.62 8.41 13.86 4.22 5.44 9.48 4.64 11.13 7.30 8.90 2.79 10.53 2.99 净资产收益率(X3) 8.73 17.29 7.00 10.13 11.83 15.41 17.16 6.09 12.97 9.35 14.3 14.36 12.53 5.24 18.55 6.99 销售毛利率(X4) 54.89 44.25 89.37 73 25.22 36.44 9.96 56.26 82.23 13.04 50.51 29.04 65.5 19.79 42.04 22.72 1. 主成分分析的做法 第一,将EXCEL中的原始数据导入到SPSS软件中;
注意: 导入Spss的数据不能出现空缺的现象,如出现可用0补齐。 第二,对四个指标进行标准化处理; 【1】“分析”|“描述统计”|“描述”。
【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。
【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。
所做工作: a. 原始数据的标准化处理 数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择,这里介绍怎么进行数据的Z标准化。 所的结论: 标准化后的所有指标数据。 注意: SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。 第三,并把标准化后的数据保存在数据编辑窗口中然后利用SPSS的factor过程对数据进行因子分析(指标之间的相关性判定略)。
【1】“分析”|“降维”|“因子分析”选项卡,将要进行分析的变量选入“变量”列表;
【2】设置“描述”,勾选“原始分析结果”和“KMO与Bartlett球形度检验”复选框; 【3】设置“抽取”,勾选“碎石图”复选框;
【4】设置“旋转”,勾选“最大方差法”复选框;
【5】设置“得分”,勾选“保存为变量”和“因子得分系数”复选框; 【6】查看分析结果。
所做工作: a.查看KMO和Bartlett 的检验 KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析; Bartlett 球度度检验的Sig值越小于显着水平0.05,越说明变量之间存在相关关系。 所的结论: 符合因子分析的条件,可以进行因子分析,并进一步完成主成分分析。 注意: 1.KMO(Kaiser-Meyer-Olkin) KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合作因子分析。 Kaiser给出了常用的kmo度量标准: 0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。 2.Bartlett 球度检验: 巴特利特球度检验的统计量是根据相关系数矩阵的行列式得到的,如果该值较大,且其对应的相伴概率值小于用户心中的显着性水平,那么应该拒绝零假设,认为相关系数矩阵不可能是单位阵,即原始变量之间存在相关性,适合于做主成份分析;相反,如果该统计量比较小,且其相对应的相伴概率大于显着性水平,则不能拒绝零假设,认为相关系数矩阵可能是单位阵,不宜于做因子分析。 Bartlett 球度检验的原假设为相关系数矩阵为单位矩阵,Sig值为0.001小于显着水平0.05,因此拒绝原假设,说明变量之间存在相关关系,适合做因子分析。 所做工作: b. 全部解释方差或者解释的总方差(Total Variance Explained) 初始特征根(Initial Eigenvalues)大于1,并且累计百分比达到80%~85%以上。 查看相关系数矩阵的特征根及方差贡献率见表3,由于前2个主成分贡献率≥85%、结合表4中变量不出现丢失,所以提取的主成分个数m=2。 所的结论: 初始特征根:λ1=1.897 λ2=1.550 主成分贡献率:r1=0.47429 r2=0.38740 注意: 主成分的数目可以根据相关系数矩阵的特征根来判定,如前所说,相关系数矩阵的特征根刚好等于主成分的方差,而方差是变量数据蕴涵信息的重要判据之一。根据λ值决定主成分数目的准则有三: 1.只取λ>1的特征根对应的主成分 从Total Variance Explained表中可见,第一、第二和第三个主成分对应的λ值都大于1,这意味着这三个主成分得分的方差都大于1。本例正是根据这条准则提取主成分的。 2.累计百分比达到80%~85%以上的λ值对应的主成分 在Total Variance Explained表可以看出,前三个主成分对应的λ值累计百分比达到89.584%,这暗示只要选取三个主成分,信息量就够了。 3.根据特征根变化的突变点决定主成分的数量 从特征根分布的折线图(Scree Plot)上可以看到,第4个λ值是一个明显的折点,这暗示选取的主成分数目应有p≤4。那么,究竟是3个还是4个呢?根据前面两条准则,选3个大致合适(但小有问题)。 第四,计算特征向量矩阵(主成分表达式的系数) 【1】将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为变量V1、V2); F1=V1/SQR(λ1)