ʵĵ
һ⣺
1. u?2v?3㣺(1) 4uvlogvο𰸣 >> u=2; >> v=3; 1
>> 4*u*v/log(v) ans =
21.8457 2
>> (exp(u)+v)^2/(v^2-u) ans =
15.4189 3
>> sqrt(u-3*v)/(u*v) ans =
0 + 0.4410i 2. cos 60-39?2 >> cos(pi/3)-(9-2^(1/2))^(1/3)
?e(2)
(3) u?3v uvv2?uu?v?2ans =
-1.4649
3. л֡ (1) ?x?x3?x5dx
?1 1(2) (3)
?? 110101sinyx?ydxdy 2x?4?2?0[sin2(x??3)?cos(x??6)]dx
ο𰸣 1
>> f = @(x)x+x.^3+x.^5; >> q = quad(f,-1,1) q =
2.2204e-016 (2)
>> f5 = @(x,y)sin(y).*(x+y)./(x.^2+4); >> q = dblquad(f5,1,10,1,10) q =
5.5254 (3)
>> f = inline('sin(2*(x+pi/3))+cos(x+pi/6)','x'); >> Q = quad(f,0,2*pi)
ʵĵ
Q =
6.7851e-009
4. һ10000Ԫص飬ֵΪ110000֮5000Ԫصƽ
a = 1:10000; Tclare array a b = a > 5000; %Create mask
a(b) = sqrt(a(b)); %Take square root 5. 3a(x-y)-4b(y-x) ʽֽ
ο𰸣
>> factor(sym('3*a^2*(x-y)^3 - 4*b^2*(y-x)^2')) ans =
(x-y)^2*(3*a^2*x-4*b^2-3*a^2*y)
2322?3x?4y?7z?12w?4??5x?7y?4z?2w??36. Է?
?x?8z?5w?9???6x?5y?2z?10w??8>> A=[3 4 -7 -12; 5 -7 4 2; 1 0 8 -5; -6 5 -2 10]
A =
3 4 -7 -12 5 -7 4 2 1 0 8 -5 -6 5 -2 10 >> B=[4;-3;9;-8] B = 4 -3 9 -8 >> x=A\\B x =
-1.4841 -0.6816 0.5337 -1.2429
7. иʽ 1limtanx?sinx
x?01?cos2x322y?x?2x?sinxy?
3y?xyln?x?y??f/?x?f/?y?f/?x?y
2
ʵĵ
4y?ln(1?t)dxy???270ln(1?t)dx
ο𰸣 1
>> limit(sym('(tan(x) - sin(x))/(1-cos(2*x))')) ans = 0 2
>> y = sym('x^3 - 2*x^2 + sin(x)'); >> diff(y) ans =
3*x^2-4*x+cos(x) 3
>> f = x*y*log(x+y); >> fx = diff(f,x) fx =
y*log(x+y)+x*y/(x+y) >> fy = diff(f,y) fy =
x*log(x+y)+x*y/(x+y) >> f2xy = diff(fx,y) f2xy =
log(x+y)+y/(x+y)+x/(x+y)-x*y/(x+y)^2 4 >> syms t
>> y = log(1+t); >> int(y) ans =
log(1+t)*(1+t)-t-1 >> int(y,0,27) ans =
56*log(2)+28*log(7)-27
8. ֪A='ilovematlab';B='matlab'ҳ 1BAеλã 2BA档 ⣺Lb=strfind(A,B) Lb= 6
Le=Lb+length(B)-1 Le= 11
9. ֻһ̼Ḷ́Һԭֱ̼Ӱ쵽ұʱij̣±ijƽ¯۸̼x뾫ʱ䣨y¼