中考数学重难考点突破
——数学文化题型分类解析
数学文
化指数学的思想、精神、方法、观点、语言,以及它们的形成和发展。数学作为一种
文化现象,早已是人们的常识。在近几年的中考中,以数学文化为载体的数学题越来越多,只要我们平时注意积累和了解这方面的常识,解题时注意审题,实现载体与考点的有效转化,透过现象看本质,问题便可迎刃而解.
考点1 以数学名著为题材
例1《九章算术》中,将两底面是直角三角形的棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,主视图中的虚线平分矩形的面积,则该“堑堵”的侧面积为( )
A.2 B.4+2 C.4+4
2 D.6+4
2 2
例题分层分析
(1)通过阅读,你知道“堑堵”是什么样的图形吗?
(2)根据“堑堵”的定义,你能推断出该几何体的底面是什么图形?侧面又是什么图形? 【解答】C
[解析] 依题意得,该几何体为三棱柱,且底面为等腰直角三角形,两直角边长均为2,高为2,所以其侧面积为S=2×2+2
2×2=4+4
2,故选C.
[赏析] 该题以我国古代数学名著《九章算术》中所描述的特殊几何体“堑堵”为背景,是一道新概念信息的信息迁移题.试题以三视图为依托,在考查空间想象能力的同时传播数学文化. |针对训练|
1.《九章算术》是人类科学史上应用数学的最早巅峰,在研究比率方面的应用十分丰富,其中有“米谷粒分”问题:粮仓开仓收粮,粮农送来1534石,验其米内杂谷,随机取米一把,数得254粒内夹谷28粒,则这批米内夹谷约( ) A.134石 B.169石 C.268石 D.338石
2.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少? 设折断处离地面的高度为x尺,则可列方程为( ) A.x2-6=(10-x)2 B.x2-62=(10-x)2 C.x2+6=(10-x)2 D.x2+62=(10-x)2
3. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸.问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由图,则井深为( )
A.1.25尺 B.57.5尺 C.6.25尺 D.56.5尺
4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国目前已知最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三1十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈36L2h,2
它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈75L2h相当于将圆锥体积公式中的π近似取为( ) 2225157355 A.7 B.8 C.50 D.113 5. 我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?” 意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x、y人,则可以列方程组为________.
6. 明代数学家程大位的《算法统宗》中有这样一个问题(如图Z11-11),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)
7. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(________+________).
易知,S△ADC=S△ABC,________=________,________=________. 可得S矩形NFGD=S矩形EBMF.
8.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x的值为________.
9. 阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:
???b=mn,
1??c=2(m2+n2).
1
a=2(m2-n2),
其中m>n>0,m,n是互质的奇数.
应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.
10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.
考点2 以科技或数学时事为题材
例2“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图Z2中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是( )
图1