19.微分方程(y?)2?(y??)2y?y?0的阶数是( )
A.1
B.2
C.3
D.4
【答案】B
【解析】微分方程的阶数为方程中最高阶导数的阶数,故选B.
20.微分方程dy?2xy2dx?0满足条件y(1)??1的特解是( )
A.y?1 x2B.y??1 x2C.y?x2 D.y??x2
【答案】B
【解析】对微分方程分类变量,得得C?0,故方程的特解为y??
21.下列各组角中,可以作为向量的方向角的是( )
A.
dy1?2xdx,两边积分,得??x2?C,代入y(1)??1,2yy1,应选B. x2???443,, B.
???643,, C.
???334,, D.
???432,,
【答案】C
【解析】向量的方向角须满足cos2??cos2??cos2??1,计算可知只有C满足.
22.直线L:
x?1y?2z?4与平面?:2x?3y?z?4?0的位置关系是( ) ??2?31A.L在?上 C.L与?平行
B.L与?垂直相交 D.L与?相交,但不垂直
【答案】B
【解析】由于直线的方向向量与平面的法向量平行,故L与?垂直相交,应选B.
23.下列方程在空间直角坐标系中所表示的图形为柱面的是( )
x2z2A.??y2
73x2y2z2C.?1??
4169
x2y2B.z?1??
44D.x2?y2?2x?0
【答案】D
【解析】D中,曲面在xOy平面上的投影为圆,故D为柱面,其他均不是,应选D. 24.lim2?xy?4?( )
x?0xyy?0B.1
1C.?
4 A.0 D.不存在
【答案】C 【解析】lim
25.设z?f(x2?y2,2x?3y),则
A.2yf1??3f2?
?z?( ) ?y2?xy?4(2?xy?4)(2?xy?4)11?lim??lim??.
x?0x?0x?0xy4xy(2?xy?4)xy?4y?0y?0y?02?B.?2yf1??3f2? C.2xf1??2f2? D.2xf1??2f2?
【答案】B 【解析】
26.设I??dx?02x220?z?f1??(?2y)?f2??3??2yf1??3f2?,故选B. ?yf(x,y)dy??f(x,y)dx
222dx?8?x20则交换积分次序后,I可以化为( ) f(x,y)dy,
B.?dy?x20228?x2
A.?dy?028?y22yf(x,y)dx
C.?220dy?x228?x2f(x,y)dx
D.?dy?02222f(x,y)dx
【答案】A
【解析】画出积分区域如图,交换积分次序得I??20dy?8?y22yf(x,y)dx,故选A.
27.积分?dx?0121
xydy?( )
2 A.2
1B.
3C.
1 2D.0
【答案】C
【解析】?dx?x2ydy??0112321xdx?x3022110?1.2
L28.设是抛物线x?y2上从O(0,0)到A(1,1)的一段弧,则曲线积分?2xydx?x2dy?( )
A.0
B.2
C.4
D.1
【答案】D
【解析】?2xydx?x2dy??(2y2?y?2y?y4)dy?5?y4dy?5y5L001110?1.
29.幂级数?(n?1)xn的收敛区间为( )
n?1? A.(0,1) B.(??,??) C.(?1,1) D.(?1,0)
【答案】C 【解析】??lim
30.下列级数收敛的是( )
1A.?(?1)
n?1n?1n?n??an?1n?2?lim?1,故收敛半径R?1,收敛区间为(?1,1). n??n?1an?1?B.?ln?1??
?n?n?1?1C.?sin
nn?1?nnD.?
n?1n!?【答案】A
?1?ln?1??n?11?1,【解析】A为交错级数,且lim单调递减,故收敛;lim??0,
n??n??n?11n?1n1n?an?1(n?1)n?1n!1?n?1?n??lim?lim?n?lim?lim?1,而?发散,故B、C均发散; ??e,n??an??(n?1)!n??n??1nnn??n?1nnsin??1,发散,故选A.
二、填空题(每小题2分,共20分)
31.函数f(x)在点x0有定义是极限limf(x)存在的________条件.
x?x0【答案】既不充分也不必要
【解析】f(x)在点x0有定义表明f(x)定义域中包含x0,limf(x)存在等价于
x?x0?x?x0limf(x)?limf(x),二者没有什么本质的联系. ?x?x0
?3?32. 已知lim?1??x??x??px?e?2,则p?________.
【答案】
2 3pxx??(?3p)3?3??3?【解析】lim?1???lim?1??x??x???x??x??e?3p?e?2,故p?
2
.3
?eax?a,x?033.函数f(x)?? 是连续函数,则a?________.
acos2x?x,x?0?【答案】
1 2x?0【解析】lim由f(x)的连续性,f(x)?lim(acos2x?x)?a,f(x)?lim(eax?a)?1?a,lim????x?0x?0x?0知1?a?a,即a?
1.2
?1?34.设函数f?2??x4,则f?(x)?________.
?x?2 x312?1?【解析】f?2??x4,f(x)?2,f?(x)??3.
xx?x?【答案】?
35.不定积分?2?cosxdx?________.
2x?sinx【答案】ln2x?sinx?C 【解析】?
2?cosx1dx??d(2x?sinx)?ln2x?sinx?C.
2x?sinx2x?sinx36.向量a??1,0,1?与向量b???1,1,0?的夹角是________. 【答案】
2? 3a?b?112?. ???,故a,b?ab232?2【解析】cosa,b?
37.微分方程y??y?x?0的通解是________. 【答案】y?x?Ce?x?1
【解析】由一阶线性微分方程的通解公式得微分方程的通解为
?dx??x?dxy?e????xedx?C??e????xedx?C??ex?x(xex?ex?C)?x?Ce?x?1,其中C为任意常
数.
38.设方程x?2y?z?2xyz?0所确定的隐函数为z?z(x,y),则【答案】?5
【解析】方程两边对x求偏导,得1?
39.曲面z?x2?y2在点(1,2,5)处的切平面方程是________. 【答案】2x?4y?z?5
【解析】令F(x,y,z)?x2?y2?z,Fx?2x,Fy?2y,Fz??1,故点(1,2,5)处的切平面法向量为(2,4,?1),所以切平面的方程为2(x?1)?4(y?2)?(z?5)?0,即2x?4y?z?5.
1展开成(x?4)的幂级数是________. x?(?1)n【答案】?n?1(x?4)n,x?(0,8)
n?04?z?z???2y?z?x??0,z?x?x???z?xx?0y?1?________.
x?0y?1??2,代入得
?z?xx?0y?1??5.
40.将f(x)??1【解析】??(?1)nxn,
1?xn?0?11111?(?1)nn?x?4?f(x)??????(?1)???n?1(x?4)n,x?(0,8). ?x4?x?441?x?44n?0?4?n?044n