第三节 泰勒公式 习题 3-3 P. 143~144
4321. 按(x?4)的幂展开多项式f(x)?x?5x?x?3x?4.
解 f(4)?(x4?5x3?x2?3x?4)x?4??56,f?(4)?(4x3?15x2?2x?3)x?4?21,
f??(4)?(12x2?30x?2)x?4?74,f???(4)?(24x?30)x?4?66,
f(4)(4)?24,f(n)(4)?0(n?5).
432所以 f(x)?x?5x?x?3x?4
??56?21(x?4)?746624(x?4)2?(x?4)3?(x?4)4 2!3!4!234 ??56?21(x?4)?37(x?4)?11(x?4)?(x?4). 232. 应用麦克劳林公式,按x的幂展开函数f(x)?(x?3x?1).
6354242323解f(x)?(x?3x?1)?x?27x?1?9x?27x?27x?9x?3x?3x?18x
?x?9x?30x?45x?30x?9x?1
65432f(0)?[(x2?3x?1)3]x?0?1,
f?(0)?(6x5?45x4?120x3?135x2?60x?9)x?0??9, f??(0)?(30x4?180x3?360x2?270x?60)x?0?60,
f???(0)?(120x3?540x2?720x?270)x?0??270, f(4)(0)?(360x2?1080x?720)x?0?720,
f(5)(0)?(720x?1080)x?0??1080, f f(6)(0)?(720)x?0?720,
(0)?0(n?7).
(n)f??(0)2f???(0)3f(n)(0)nf(n?1)(?)n?1f(x)?f(0)?f?(0)x?x?x???x?x
2!3!n!(n?1)! ?1?9x?60227037204108057206x?x?x?x?x 2!3!4!5!6!第 146 页 共 54 页
?1?9x?30x?45x?30x?9x?x. 3. 求函数f(x)?23456x按(x?4)的幂展开的带有拉格朗日余项的3阶泰勒公式.
解 这里x0?4. f(4)?xx?4?2,
??x?4f?(4)?12xx?4?11,f??(4)??44x313,f???(4)?328x5?x?43, 256f(4)(?)??1516x7x????1516?7(?在x0与x之间),
f??(4)f???(4)f(4)(?)23x?f(4)?f?(4)(x?4)?(x?4)?(x?4)?(x?4)4
2!3!4! ?2?11131151(x?4)??(x?4)2??(x?4)3??(x?4)4 4322!2563!16?74!111154(x?4)?(x?4)2?(x?4)3?(x?4)(?在4与x之间) 34645124!?16?? ?2?11115?2?(x?4)?(x?4)2?(x?4)3?4645124!?16(x?4)4[4??(x?74)]2,(0???1).
4. 求函数f(x)?lnx按(x?2)的幂展开的带有佩亚诺余项的n阶泰勒公式. 解 f(x)?lnx,f?(x)?1?x?1,f??(x)?(?1)x?2,f???(x)?(?1)(?2)x?3 x(n?1)!. nx??x?2f(4)(x)?(?1)(?2)(?3)x?4,… ,f(n)(x)?(?1)n?1这里x0?2. f(2)?ln2,f?(2)?1x?x?211,f??(2)??22x??1, 22f???(2)?2x3?x?226(4)f(2)??,23x4x?26(n)n?1(n?1)!f(2)?(?1),… , 4n22f(x)?f(x0)?f?(x0)(x?x0)?f??(x0)f???(x0)(x?x0)2?(x?x0)3??? 2!3!f(n)(x0)(x?x0)n?o((x?x0)n), ?n!lnx?ln2?1112161(x?2)?2?(x?2)2?3?(x?2)3?4?(x?2)4?? 222!23!24!第 146 页 共 54 页
?(?1)n?1(n?1)!nn(x?2)?o((x?2)) nn!?2 ?ln2?111134(x?2)?3(x?2)2?(x?2)?(x?2)??? 34223?24?2n?1 ?(?1)1nn(x?2)?o((x?2)). n?2n5. 求函数f(x)?解 f(x)?1按(x?1)的幂展开的带有拉格朗日余项的n阶泰勒公式. x?1(?1)(?2)1, ?x?1,f?(x)?(?1)x?2?2,f??(x)?(?1)(?2)x?3?xxx3(?1)(?2)(?3),… , 4x?(n?1)f???(x)?(?1)(?2)(?3)x?4?f(n)(x)?(?1)(?2)?(?n)x(?1)nn!?. n?1x(n)这里x0??1,f(?1)??1,f?(x)??1,f??(x)??2!,f???(x)??3!,… ,f(x)??n!.
f(x)?f(x0)?f?(x0)(x?x0)?f??(x0)f???(x0)(x?x0)2?(x?x0)3??? 2!3!f(n)(x0)f(n?1)(?)n?(x?x0)?(x?x0)n?1(?在x0与x之间).
n!(n?1)!1(?1)n?123n所以 ??1?(x?1)?(x?1)?(x?1)???(x?1)?n?2(x?1)n?1(?在-1
x?与x之间)
(?1)n?1n?1 ??[1?(x?1)?(x?1)?(x?1)???(x?1)]?, (x?1)n?2[?1??(x?1)]23n (0???1). 6. 求函数f(x)?tanx的带有佩亚诺余项的3阶麦克劳林公式.
2?2?3解 f(x)?tanx,f?(x)?secx?cosx,f??(x)?(?2)cosx(?sinx)
?2cos?3xsinx,f???(x)?2[(?3)cos?4xsin2x?cosx?2].
f(0)?0,f?(0)?1,f??(0)?0,f???(0)?2.
第 146 页 共 54 页
f(n)(0)nf??(0)2f???(0)3x?o(xn), f(x)?f(0)?f?(0)x?x?x???n!2!3!所以 tanx?x?13x?o(x3). 3x7. 求函数f(x)?xe的带有佩亚诺余项的n阶麦克劳林公式. xxx解 f(x)?xe,f?(x)?(1?x)e,f??(x)?(2?x)e,… ,f(n)(x)?(n?x)ex.
f(0)?0,f?(0)?1,f??(0)?2,… ,f(n)(0)?n.
f(n)(0)nf??(0)2f???(0)3x?o(xn), f(x)?f(0)?f?(0)x?x?x???n!2!3!所以 xe?x?x?x2131x???xn?o(xn). 2!(n?1)!x2x31xx?8. 验证当0?x?时,按公式e?1?x?计算e的近似值时,所产生的误差小262于0.01,并求e的近似值,使误差小于0.01.
f(4)(?)4f(4)(?x)4e?x4x?x?x(0???1). 解 R3?4!4!4!这里 x?1e1,误差R3?x4??()4?0.0043?0.01,所以 24!4!211()2()31111e?1??2?2?1????1.646.
2848226?x1e29. 应用3阶泰勒公式求下列各数的近似值,并估计误差:
?(1)330; (2)sin18.
解 (1)330?327(1? (1?x)?1??x??31)?331? 279?(??1)2!3!?(??1)(??2)(??3)(1??x)??4x4. R3(x)?4!121251?(?)(?)(?)11113?(1)2?333(1)3?1.03575. 所以 31??(1?)3?1???399392969第 146 页 共 54 页
x2??(??1)(??2)x3?R3(x),
330?331?1?3?1.03575?3.10725. 9误差估计:
3R3(x)?3?(??1)(??2)(??3)4!(1??x)??4x4?3?(??1)(??2)(??3)4!x4
1257(?)(?)(?)333(1)4?3?0.0000055?0.0000165. ?33249(2)sin18?sin??10.
x3(?1)2cos?x5?R4(x),R4(x)? sinx?x?x(0???1). 3!5!? sin18?sin?10??10103!?(?)3?0.30899.
(?1)2cos?x51?误差估计:R4(x)?x?()5?0.0000255.
5!5!1010. 利用泰勒公式求下列极限:
?x22(1)lim(x?3x?x???3324x4?2x3); (2)limcosx?e;
x?0x2[x?ln(1?x)]12x?1?x2122(3)lim; (4)lim[x?xln(1?)]. 2x?0(cosx?ex)sinx2x??x1?解(1)lim(x?3x?x???3324x4?2x3). 令u?1?,当x???,u?0. x3x3?3x2?4x4?2x3?x31?32?x41?(当x?X,P31定义2) xx111??(3u)?o(3u)?[1?(?2u)?o(?2u)]1?3u?1?2u34? ?uu1u?o(3u)?u?o(?2u)3o(3u)o(?2u)2??? ?. 2uuu34第 146 页 共 54 页