好文档 - 专业文书写作范文服务资料分享网站

(完整word版)高考数学真题导数专题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)ex﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若 f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 5.设函数f(x)=(1﹣x2)ex. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣(1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极第1页(共17页)

)…(1+)<m,求)e﹣x(x≥).

值,有极值时求出极值. 8.已知函数f(x)=excosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥. 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤ex在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数 f(x)=ex(ex﹣a)﹣a2x. (1)讨论 f(x)的单调性; (2)若f(x)≥0,求a的取值范围. 第2页(共17页)

2017年高考真题导数专题 参考答案与试题解析 一.解答题(共12小题) 1.(2017?新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)ex﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 【解答】解:(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1, 当a=0时,f′(x)=﹣2ex﹣1<0, ∴当x∈R,f(x)单调递减, 当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣), 令f′(x)=0,解得:x=ln, 当f′(x)>0,解得:x>ln, 当f′(x)<0,解得:x<ln, ∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增; 当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立, ∴当x∈R,f(x)单调递减, 综上可知:当a≤0时,f(x)在R单调减函数, 当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数; (2)①若a≤0时,由(1)可知:f(x)最多有一个零点, 当a>0时,f(x)=ae2x+(a﹣2)ex﹣x, 当x→﹣∞时,e2x→0,ex→0, ∴当x→﹣∞时,f(x)→+∞, 当x→∞,e2x→+∞,且远远大于ex和x, ∴当x→∞,f(x)→+∞, 第3页(共17页)

∴函数有两个零点,f(x)的最小值小于0即可,

由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数, ∴f(x)min=f(ln)=a×(

)+(a﹣2)×﹣ln<0,

∴1﹣﹣ln<0,即ln+﹣1>0, 设t=,则g(t)=lnt+t﹣1,(t>0), 求导g′(t)=+1,由g(1)=0, ∴t=>1,解得:0<a<1, ∴a的取值范围(0,1).

方法二:(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1, 当a=0时,f′(x)=2ex﹣1<0, ∴当x∈R,f(x)单调递减,

当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣), 令f′(x)=0,解得:x=﹣lna, 当f′(x)>0,解得:x>﹣lna, 当f′(x)<0,解得:x<﹣lna,

∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增; 当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立, ∴当x∈R,f(x)单调递减,

综上可知:当a≤0时,f(x)在R单调减函数,

当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数; (2)①若a≤0时,由(1)可知:f(x)最多有一个零点,

②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,

当a=1,时,f(﹣lna)=0,故f(x)只有一个零点, 当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0, 故f(x)没有零点,

第4页(共17页)

当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0, 由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0, 故f(x)在(﹣∞,﹣lna)有一个零点,

假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=>

﹣n0>

﹣n0>0,

(a

+a﹣2)﹣n0

由ln(﹣1)>﹣lna,

因此在(﹣lna,+∞)有一个零点. ∴a的取值范围(0,1).

2.(2017?新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a;

(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0), 则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣. 则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减, 所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0. 因为当0<x<时h′(x)<0、当x>时h′(x)>0, 所以h(x)min=h(), 又因为h(1)=a﹣a﹣ln1=0, 所以=1,解得a=1;

(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,

令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣, 令t′(x)=0,解得:x=,

所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,

所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根

第5页(共17页)

(完整word版)高考数学真题导数专题及答案

2017年高考真题导数专题一.解答题(共12小题)1.已知函数f(x)=ae2x+(a﹣2)ex﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.已知函数f(x)=x﹣1﹣aln
推荐度:
点击下载文档文档为doc格式
6gine7sytc7f1wl0k4bu3bj0w6iihw013id
领取福利

微信扫码领取福利

微信扫码分享