专业整理分享
圆锥曲线大综合
第一部分 圆锥曲线常考题型和热点问题
一.常考题型
题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点问题
题型四:过已知曲线上定点的弦的问题 题型五:共线向量问题 题型六:面积问题
题型七:弦或弦长为定值的问题 题型八:角度问题 题型九:四点共线问题
题型十:范围为题(本质是函数问题)
题型十一:存在性问题(存在点,存在直线y?kx?m,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)
二.热点问题
1.定义与轨迹方程问题
2.交点与中点弦问题 3.弦长及面积问题 4.对称问题 5.范围问题 6.存在性问题 7.最值问题
8.定值,定点,定直线问题
第二部分 知识储备
一. 与一元二次方程ax2?bx?c?0(a?0)相关的知识(三个“二次”问题)
1. 判别式:??b2?4ac
2. 韦达定理:若一元二次方程ax?bx?c?0(a?0)有两个不等的实数根x1,x2,则
2x1?x2??bc,x1?x2? aa23. 求根公式:若一元二次方程ax?bx?c?0(a?0)有两个不等的实数根x1,x2,则
?b?b2?4acx1,2?
2a二.与直线相关的知识
1. 直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式
WORD完美.格式
专业整理分享
2. 与直线相关的重要内容:①倾斜角与斜率:y?tan?,??[0,?);
②点到直线的距离公式:d?Ax0?By0?CA?B22(一般式)或d?kx0?y0?b1?k22 (斜截式)
3. 弦长公式:直线y?kx?b上两点A(x1,y1),B(x2,y2)间的距离:
AB?1?k2x1?x2?(1?k2)[(x1?x2)2?4x1x2](或AB?1?4. 两直线l1:1y1?y2) k2y1?k1x1?b1,l2:y2?k2x2?b2的位置关系:
① l1?l2?k1?k2??1 ②l1//l2?k1?k2且b1?b2
5. 中点坐标公式:已知两点A(x1,y1),B(x2,y2),若点M?x,y?线段AB的中点,则
x1?x1y?y2 ,y?122三.圆锥曲线的重要知识
x?考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。 文科:掌握椭圆,了解双曲线;理科:掌握椭圆及抛物线,了解双曲线
1. 圆锥曲线的定义及几何图形:椭圆、双曲线及抛物线的定义及几何性质。 2. 圆锥曲线的标准方程:①椭圆的标准方程
②双曲线的标准方程 ③抛物线的标准方程 3. 圆锥曲线的基本性质:特别是离心率,参数a,b,c三者的关系,p的几何意义等
2b22b24. 圆锥曲线的其他知识:①通径:椭圆,双曲线,抛物线2p
aa②焦点三角形的面积:p在椭圆上时SF1PF2?b2?tan?2
p在双曲线上时SF1PF2?b2/tan?2
四.常结合其他知识进行综合考查
1. 圆的相关知识:两种方程,特别是直线与圆,两圆的位置关系
2. 导数的相关知识:求导公式及运算法则,特别是与切线方程相关的知识
3. 向量的相关知识:向量的数量积的定义及坐标运算,两向量的平行与垂直的判断条件等 4. 三角函数的相关知识:各类公式及图像与性质
5. 不等式的相关知识:不等式的基本性质,不等式的证明方法,均值定理等
五.不同类型的大题 (1)圆锥曲线与圆
例1.(本小题共14分)
WORD完美.格式
专业整理分享
3x2y2已知双曲线C:2?2?1(a?0,b?0)的离心率为3,右准线方程为x?
3ab(Ⅰ)求双曲线C的方程;
l与双曲线C(Ⅱ)设直线l是圆O:x?y?2上动点P(x0,y0)(x0y0?0)处的切线,
交于不同的两点A,B,证明?AOB的大小为定值…
【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程
的关系等解析几何的基本思想方法,考查推理、运算能力.
22?a23???c3,解得a?1,c?3,
(Ⅰ)由题意,得??c?3??ay2?1. ∴b?c?a?2,∴所求双曲线C的方程为x?2222222(Ⅱ)点P?x0,y0??x0y0?0?在圆x?y?2上,
圆在点P?x0,y0?处的切线方程为y?y0??化简得x0x?y0y?2.
x0?x?x0?, y0?2y2?1?x?22222由?及x0?y0?2得?3x0?4?x?4x0x?8?2x0?0, 2?xx?yy?20?02∵切线l与双曲线C交于不同的两点A、B,且0?x0?2, 2222∴3x0?4?0,且??16x0?43x0?48?2x0?0,
????设A、B两点的坐标分别为?x1,y1?,?x2,y2?,
24x08?2x0则x1?x2?2, ,x1x2?23x0?43x0?4∵cos?AOB?OA?OBOA?OB,且
OA?OB?x1x2?y1y2?x1x2?12?x0x1??2?x0x2?, 2?y0 WORD完美.格式