曲靖一中高考复习质量监测卷六
理科数学参考答案
一、选择题(本大题共12小题,每小题5分,共60分) 题号 答案 【解析】
1.A?(?1,3),B?[?1,??),故选D.
1 D 2 C 3 B 4 A 5 D 6 C 7 C 8 D 9 A 10 A 11 B 12 B 71712?7??1?2.z?,故选C. ?i,z??i,|z|???????525252525?25??25?uuuruuuruuuruuuruuur1uuuruuur3.如图1,取AB的中点C,AO?AC?CO?AB?CO,∴AOgAB?
222r291uuuAB?,故选B. 22图1
4.v1?4?5?2?22;v2?22?5?3.5?113.5;v3?113.5?5?2.6?564.9;v4?564.9?5?1.7
?2826.2,故选A.
cos2??sin2?1?tan2?35.tan??2,cos2??,故选D. ???cos2??sin2?1?tan2?5??3a1?3d?12,∴a1?1,d?3或a1?4,d?0,∴a9?1?8d?25或a9?4,故选C. 6.?2a(a?5d)?(a?d),??117.几何体(如图2)为三棱锥S?ABC,S△ABC?2,S△SAB?S△SBC?22,S△SAC?23,表面积为2?42?23,故选C.
ππ?π???≥?,?5?31228.由题设知?∴0??≤,故选D.
4?π??π≤π,?122?6图2
9.∵f(?x)?f(x)?4,∴f(x)的图象关于点(0,2)对称,∴M?m?2?2?4,故选A.
?π3?4π??33?10.图3中阴影部分的面积为43?2π?2?,??32?3??33?故概率P?4π3?3?3π,故选A.
4943图3
11.由f(x)?0,得lnx?ax,a?lnxlnx1?lnx,设??x)?,当x?(0,,当??),??(x)?2xxx??)0?x?e时,??(x)?0;当x?e时,??(x)?0,∴?(x)在(0,e)上为增函数,在(e,11上为减函数且?(x)?0,∴?(e)?,∴0?a?,故选B.
ee12.设双曲线的渐近线与x轴的夹角为?,则它与y轴的夹角为
π1,??,∴e1?2cos?e2?11π?111??π?,∴??sin??cos??2sin????,???0,?,∴? ?e1e24?e1?π?sin???2?cos?????2?1?(1,2],故选B. e2二、填空题(本大题共4小题,每小题5分,共20分) 题号 答案 【解析】
13.令x?0,得a0?1,令x?1,得a0?a1?a2?L?a10?(?2)10?1024,∴a1?a2?a3?L?a10 ?(?2)10?1023.
13 14 15 y0y?px?px0 16 1023 1 3n?42 314.由3anan?1?an?an?1,知
11111. ??3,又??1,∴?3n?4,∴an?an?1anana13n?4202???y0?y??y?y0?k?x??,222p15.设切线方程为y?y0?k?x?,由????得ky?2py?2py0?ky0?0,
2p???2?y?2px,2??4p2?4k(2py0?ky0)?4(p?ky0)2,由??0,求得k?p,∴切线方程为y02?y0p?y?y0??x??,即y0y?px?px0.
y0?2p?16.∵OB?OC?OP?22,PB?PC?4,∴OB2?OP2?PB2,OC2?OP2?PC2,
∴OP?OB,OP?OC,∴OP?平面ABC,设PM?t(0?t?22),则CN?t,
1112VM?OCN?ggCOgCNsin?OCNgOM?t(22?t),当t?2时,VM?OCN?最大.
3233三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)
rr解:(1)∵mgn?2acosA,
∴bcosC?ccosB?2acosA, ………………………………………………(2分)
[来源:Zxxk.Com]
sinBcosC?sinCcosB?2sinAcosA,
sin(B?C)?2sinAcosA,
……………………………………………………………(4分) sinA?2sinAcosA,又sinA?0,
1∴cosA?,
2∴A?60?. ……………………………………………………………(6分) uuuruuuruuur?ABAC?uuuruuur??(2)设AD????|AB||AC?, |??uuurrr?uuu?uuurAB?uuurAC,即AD?uuu ……………………………………………………(8分) |AB||AC|r?uuur?1, ∵D在BC边上,∴uuu|AB||AC|??即
?c??b?1,??bc20. ………………………………………………(10分) ?b?c9uuuruuur2uuur20?ABr2?20?2AC?uuu?20?uuur?uuur?∵AD??,AD???(1?2g1gcos60??1)???g3, ?9??9??9??|AB||AC|?∴|AD|?20 3. ……………………………………………………………(12分)
918.(本小题满分12分)
3C8C3解:(1)P(A)?1?3?36 ………………………………………………………(2分)
C14C14?1?1972. ………………………………………………………(5分) ?9191(2)Z的取值为0,1,2,3,
3C814P(Z?0)?3?,
C14912C8gC1426P(Z?1)??, 3C14912C1308gC6P(Z?2)??, 3C1491C35P(Z?3)?36?, ……………………………………………………………(8分)
C1491∴Z的分布列为
Z P 0 1 2 3 14 9142 9130 915 91 ……………………………………………………………(10分)
E(Z)?0?1442305117. ………………………………………(12分) ??1??2??3?919191919119.(本小题满分12分)
(1)证明:如图4,取AC的中点O,连接OD,OB, ∵DA?DC,∴AC?OD, 又△ABC为正三角形,∴AC?OB, 而OBIOD?O,∴AC?平面OBD, 又BD?平面OBD,
图4
∴AC?BD. ……………………………………………………………………(5分) (2)解:在△OBD中,
∵AB?BD?2,∴OD?1,OB?3,
∴OD2?OB2?BD2,∴DO?OB,
而DO?AC,∴DO?平面ABC. ………………………………………………(7分) 如图建立坐标系,O(0,0,0),A(1,0,0),C(?1,0,0),B(0,3,0),D(0,0,1),uuurAD?(?1,0,1),
[来源:Zxxk.Com]
r设平面ABE的一个法向量为n?(x,y,z),
rruuu??ngAB?0,r1?3), ………………………………………………(9分)由?ruuu得n?(3,, r??ngBE?0,记直线AD与平面ABE所成角为?,
[来源学科网ZXXK]
uuurr|ADgn|42rr?则sin??uuu. ……………………………………………………………(12分)
7|AD||n|20.(本小题满分12分)
解:(1)|MF1|?|MF2|?2a,
|MF1|2?|MF2|2?2|MF1||MF2|cos60??4c2,
∴3|MF1||MF2|?4a2?4c2?4b2,
4|MF1||MF2|?b2,
3∴
142gbsin60??23, 23(2分) b2?6. …………………………………………………………
c21又2?,a2?b2?c2,∴a2?8, a4x2y2(6分) ?1. ……………………………………………………∴椭圆的方程为?86(2)假设存在P(0,t),使得PN平分?APB, 当l不垂直于x轴时,设l的方程为y?kx?1, 2